

Fakultät für Chemie und Pharmazie

Modulhandbuch

Polyvalenter Zwei-Hauptfächer-Bachelorstudiengang im Fach Chemie – Hauptfach (Prüfungsordnungsversion 2022)

Inhaltsverzeichnis

Prolog	3
Allgemeine und Anorganische Chemie	
Einführungskurs Chemisches Arbeiten	15
Grundpraktikum Anorganische Chemie	19
Anorganische Chemie I	
Anorganische Chemie II	26
Organische Chemie I	
Organische Chemie II	
Grundpraktikum Organische Chemie	38
Physikalische Chemie I	
Physikalische Chemie II	44
Physikalische Chemie III	48
Grundpraktikum Physikalische Chemie	52
Rechenmethoden der Chemie und Pharmazie	
Rechenmethoden der Physikalischen Chemie I	58
Einführung in die Physik mit Experimenten für Studierende der Natur-und Umweltwissenschaften	
Biochemie I	
Grundpraktikum Biochemie	69
Makromolekulare Chemie I	
Grundpraktikum Makromolekulare Chemie	75
Bachelorarbeit	
Epiloa	80

Prolog

Fach	Chemie
Abschluss	Polyvalenter Zwei-Hauptfächer Bachelor Teilstudiengang (B.Sc.)
Prüfungsordnungs-	
version	2022
Studienform	Vollzeit
Regelstudienzeit	6 Semester
Studienbeginn	Wintersemester
Hochschule	Albert- Ludwigs- Universität Freiburg
Fakultät	Fakultät für Chemie und Pharmazie
Homepage	www.cup.uni-freiburg.de/de/chemie/studium_chemie
	Im polyvalenten Zwei-Hauptfächer Bachelorstudiengang sind im Fach Chemie im Bereich der Fachwissenschaft 75 ECTS-Punkte zu erwerben.
	Im Rahmen der Option Lehramt Gymnasium ist im Fach Chemie darüber hinaus das Modul Fachdidaktik Chemie mit einem Leistungsumfang von 5 ECTS-Punkten zu absolvieren.
Profil des Studiengangs	Im Rahmen der Option Individuelle Studiengestaltung können im Fach Chemie weitere Module beziehungsweise Lehrveranstaltungen mit einem Leistungsumfang von bis zu 12 ECTS-Punkten absolviert werden.
	Der Studiengang vermittelt in den Fachbereichen Anorganische Chemie, Analytische Chemie, Organische Chemie, Physikalische Chemie sowie wahlweise Biochemie oder Makromolekulare Chemie die für den Beruf des Chemielehrers / der Chemielehrerin notwendigen theoretischen und praktischen Fähigkeiten. Dabei wird besonderer Wert auf die Kombination von theoretischer und praktischer Ausbildung gelegt und das Curriculum weist dementsprechend einen hohen Anteil an Praktika auf.
Qualifikationsziele des Studiengangs	Absolventinnen und Absolventen des polyvalenten Zwei-Hauptfächer Bachelorstudiengangs Chemie haben grundlegendes mathematisches und physikalisches sowie fundiertes chemisches Fachwissen erworben. Sie besitzen ein grundlegendes Verständnis der chemischen Kerndisziplinen (Anorganische, Organische und Physikalische Chemie) sowie wahlweise der Biochemie oder der Makromolekularen Chemie und sind in der Lage, mit Fachleuten verwandter Disziplinen zu kommunizieren und zu kooperieren. kennen die wichtigsten experimentellen Methoden in der Chemie und können analytische und experimentelle Untersuchungen praktisch durchführen, die erhaltenen Daten auswerten, interpretieren und präsentieren. können sowohl eigenständig als auch in Teams die Lösung chemischer Probleme bearbeiten, Ergebnisse anderer verstehen und eigene und im Team erzielte Ergebnisse kommunizieren. besitzen ein grundlegendes Verständnis für Anwendungen chemischer Verbindungen und Verfahren in verschiedenen Arbeitsbereichen, kennen dabei auftretende Limitierungen und Gefahren und können ihr Wissen unter Berücksichtigung sicherheitstechnischer und ökologischer Anforderungen verantwortungsbewusst und zum Wohle der Gesellschaft anwenden. haben im Fall der Studienoption Lehramt Gymnasien grundlegende Kenntnisse zu didaktischen Prinzipien, verschiedenen Unterrichtsformen und der Planung von Unterricht erworben. Sie haben erste Erfahrungen im selbstständigen Erstellen von Unterrichtsentwürfen gesammelt und Grundsätzliches zur Planung und Durchführung von Experimenten im Chemieunterricht, zum Medieneinsatz, zur Erstellung von Leistungsüberprüfungen und zur Bewertung von Schülerleistungen erlernt. haben im Fall der Studienoption Lehramt Gymnasien ggf. über den Pflichtbereich des Studiengangs hinaus Fachkompetenzen erworben, die

	 ihnen die Aufnahme eines nicht auf den Lehrerberuf ausgerichteten Folgestudiums im Bereich der Chemie und angrenzender Disziplinen erlaubt. sind durch die Grundlagenorientierung des Studiums gut auf lebenslanges Lernen, auf den Einsatz in unterschiedlichen Berufsfeldern oder den Erwerb einer höheren Qualifikation in Ihrem Fach vorbereitet.
Sprache	deutsch
Zugangs-	Hochschulzugangsberechtigung (Abitur) oder ausländischer Bildungsnachweis,
voraussetzungen	der von der zuständigen staatlichen Stelle als gleichwertig anerkannt worden ist

Verzeichnis der Abkürzungen

BOK Berufsfeldorientierte Kompetenzen (werden vom Zentrum für Schlüsselqualifikationen der

Universität Freiburg angeboten

B.Sc. Bachelor of Science

HISinOne Campus Management-Portal an der Universität Freiburg (enthält Vorlesungsverzeichnis

und Studienplaner, sowie Leistungsübersichten und

Prüfungsanmeldemöglichkeit)

ILIAS Zentrale Lernplattform der Universität Freiburg

PL Prüfungsleistung (benotete Leistungen; gehen in die Endnote ein)SL Studienleistung (unbenotete Leistungen; gehen nicht in die Endnote ein)

V Vorlesung
Ü Übung
S Seminar

Pr Laborpraktikum

ECTS Leistungspunkte gemäß dem European Credit Transfer and Accumulation System (1

ECTS entspricht ungefähr einer Arbeitsbelastung der Studierenden von 30 Stunden)

SWS Semesterwochenstunden (1 SWS entspricht einer Veranstaltung von 45 Minuten Dauer, die

in der Vorlesungszeit eines Semester wöchentlich, also ~13-15 mal stattfindet)

Struktur und Aufbau des Studiengangs

Der polyvalente Zwei-Hauptfächer-Bachelorstudiengang hat einen Leistungsumfang von insgesamt 180 ECTS- Punkten, im Fach Chemie sind im Bereich der Fachwissenschaft 75 ECTS-Punkte zu erwerben:

- Chemie (75 ECTS-Punkte)
- Weiteres Hauptfach (75 ECTS-Punkte)
- Optionsbereich (20 ECTS- Punkte)
- Bachelor-Arbeit in einem der beiden Hauptfächer (10 ECTS-Punkte)

Option Lehramt Gymnasien (20 ECTS-Punkte)

In jedem Fach sind 5 ECTS-Punkte Fachdidaktik und zwei Bildungswissenschaftliche Module ("Einführung in die Bildungswissenschaften" und das Orientierungspraktikum mit Vor- und Nachbereitung) zu absolvieren. Diese Option dient der Vorbereitung auf einen anschließenden Studiengang Master of Education mit Fach Chemie und den Beruf des Chemielehrers / der Chemielehrerin.

Option Individuelle Schwerpunktsetzung (20 ECTS-Punkte)

Wird das Bachelorstudium nicht lehramtsbezogen durchgeführt, sind im Optionsbereich mindestens 8 ECTS-Punkte im Bereich Berufsorientierte Kompetenzen zu erwerben. Weitere 12 ECTS-Punkte sind ent- weder im Bereich Berufsorientierte Kompetenzen oder im Bereich Fachwissenschaft und Interdisziplinarität zu erwerben.

Mit einem abgeschlossenen polyvalenten Zwei-Hauptfächer-Bachelorstudiengang Chemie erfüllen Sie die Voraussetzungen für Bewerbungen für folgende Masterstudiengänge an der Universität Freiburg:

- Master of Education Chemie
- M.Sc. Biochemistry and Biophysics (bei erfolgreich absolviertem Wahlpflichtfach "Biochemie")
- M.Sc. Sustainable Materials (bei erfolgreich absolviertem Wahlpflichtfach "Makromolekulare Chemie")

Der polyvalente Bachelorstudiengang berechtigt an der Universität Freiburg nicht zum Einstieg in den Studiengang M.Sc Chemie.

Tabelle 1: Pflichtbereich (66 ECTS-Punkte)

Bereich Modul	Art	sws	ECTS- Punkte	Semester	Studienleistung/ Prüfungsleistung			
		Allgemeine	Chemie					
Allgemeine und Anorganische Chemie	V	3	5	1	PL: Klausur			
Einführungskurs Chemisches Arbeiten	Pr+S	4+2	3	1	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung			
	Α	norganisch	ne Chemie					
Grundpraktikum Anorganische Chemie	Pr+S	6 + 1	4	2	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung			
Anorganische Chemie I	V	3	4	3	PL: Klausur			
Anorganische Chemie II	V	3	4	4	PL: Klausur			
Organische Chemie								
Organische Chemie I	V + Ü	3 + 1	5	2	PL: Klausur			
Organische Chemie II	V + Ü	3 + 1	5	3	PL: Klausur			
Grundpraktikum Organische Chemie	Pr+S	8	5	5	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung			
Physikalische Chemie								
Physikalische Chemie I	V + Ü	3 + 2	6	1	SL PL: Klausur			
Physikalische Chemie II	V + Ü	3 + 2	6	2	SL PL: Klausur			
Physikalische Chemie III	V + Ü	2 + 1	3	5	SL PL: Klausur			
Grundpraktikum Physikalische Chemie	Pr	3	3	5	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung			
Re	chenmetho	den der Pl	nysikalisch	en Chemie				
Rechenmethoden der Chemie und Pharmazie	V + Ü	2 + 1	4	1	SL			
Rechenmethoden der Physikalischen Chemie I	V + Ü	2 + 1	4	2	SL			
		Phys	sik					

Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	V + Ü	4 + 1	5	3	SL
--	-------	-------	---	---	----

Tabelle 2: Wahlpflichtbereich (9 ECTS-Punkte)

Bereich Modul	Art	sws	ECTS- Punkte	Semester	Studienleistung/ Prüfungsleistung			
	i	Biochemie						
Biochemie I	V	3	4	4	PL: Klausur			
Grundpraktikum Biochemie	Pr	5	5	4	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung			
Makromolekulare Chemie								
Makromolekulare Chemie I	V + Ü	3 + 1	6	4	PL: Klausur			
Grundpraktikum Makromolekulare Chemie	Pr	5	3	4	SL PL: mündliche Prüfung			

Abkürzungen in den Tabellen:

Art = Art der Lehrveranstaltung; SWS = vorgesehene Semesterwochenstundenzahl; Semester = empfohlenes Fachsemester; Pr = Praktikum; S = Seminar; Ü = Übung; V = Vorlesung; PL = Prüfungsleistung; SL = Studienleistung

Studienverlauf

Es ist sinnvoll, das Studium gemäß der empfohlenen Reihenfolge der Fachsemester zu absolvieren. Im vierten Fachsemester kann im Wahlpflichtbereich zwischen den Fächern Biochemie und Makromolekularer Chemie gewählt werden.

Die folgenden Tabellen stellen die empfohlenen Studienverläufe modellhaft dar:

14

S

Einführung in die Physik mit Experi- menten für Studierende der Natur- und Um weltwiss.* (V+Ü, 4+1)

2

Organische Chemie II (V+Ü, 3+1)

4

Anorganische Chemie I (V+Ü, 2+1)

FS

Studienverlauf mit Wahlfach Makromolekulare Chemie

18

Studienverlauf B.Sc. Chemie polyvalent mit Wahlfach Makromolekulare Chemie

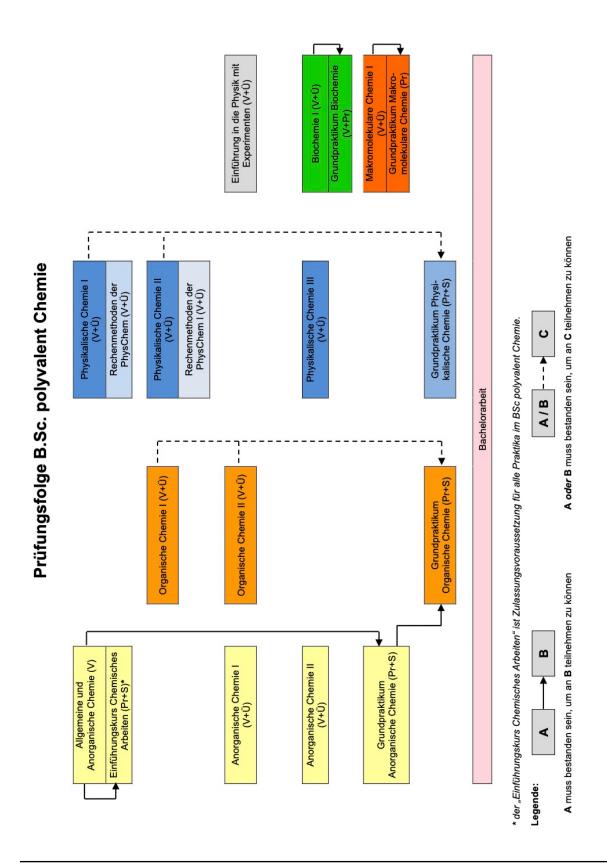
ECTS ECT		***		
ECTS				
Physik / WP / BOK				
ECTS	9	4	9	4
PC	Physikalische Chemie I (V+Ü, 3+2) 6	Rechenmethoden für Chemie und Pharmazie (V+Ü, 2+1)	Physikalische Chemie II (V+Ü, 3+2)	Rechenmethoden der Physikalischen Chemie I (V+Ü, 2+1)
ECTS			2	
00			Organische Chemie I (V+Ü, 3+1) 5	
ECTS	2	3		4
AC	Allgemeine und Anorganische Chemie* (V, 3)	Einführungskurs Chemisches Arbeiten (Pr+S, 4+2)		2. FS Grundpraktikum Anorganische Chemie für BSc poly Chemie (Pr+S, 6+1)
110	1	۲ ت		2. FS
- 2		•		••

Morganische Chemie II	ll oi				Makromolokulara Chamia I (Vaii)		
ganiscne cnem , 2+1)	4 4				Nakromolekulare Chemie I (V+U, 3+1)	9	
					Grundpraktikum Makromolekulare Chemie* (Pr,	ю	
	3				10)		13
			Physikalische Chemie III (V+Ü, 2+1)				
		Grundpraktikum Organische Grundpraktikum Physikalische Chemie für BSc poly Chemie (Pr, 5 Chemie für BSc poly Chemie (Pr,	Grundpraktikum Physikalische 5 Chemie für BSc poly Chemie (P	(Pr, 3			
		8)	(9)	1			=
		Bac	Bachelorarbeit				
	20		15	18 + 8 26		14	75

*gemeinsame Veranstaltung mit dem BSc Chemie, aber geringerer Stunden-und ECTS-Umfang

Studienverlauf mit Wahlfach Biochemie

Studienverlauf B.Sc. Chemie polyvalent


mit Wahlfach Biochemie

AC	ECTS	8	ECTS	PC	ECTS	Physik / WP / BOK	ECTS E	ECTS ECTS/FS
Allgemeine und Anorganische Chemie (V, 3*)	2			Physikalische Chemie I (V+Ü, 3+2)	9			
1. F3 Einführungskurs Chemisches Arbeiten (Pr+S, 4+2)	ъ			Rechenmethoden der Chemie und Pharmazie (V+Ü, 2+1)	4			18
		Organische Chemie I (V+Ü, 3+1)	2	Physikalische Chemie II (V+Ü, 3+2)	9			
2. FS Grundpraktikum Anorganische Chemie für BSc poly Chemie (Pr+S, 6+1)	4			Rechenmethoden der Physi- kalischen Chemie I (V+Ü, 2+1)	4			19
3. FS Anorganische Chemie I (V+Ü, 2+1)	4	Organische Chemie II (V+Ü, 3+1)	5		Einf Exp der (V+	Einführung in die Physik mit Experi- menten für Studierende der Natur- und Umweltwiss. (V+Ü, 4+1)	5	14
		No.	- 68	0.0				60
Anorganische Chemie II (V+Ü, 2+1)	4				Biod	Biochemie I (V+Ü, 3)	4	
î.					Grund; (Pr, 5)	Grundpraktikum Biochemie* (Pr, 5)	5	13
(i)								
				Physikalische Chemie III (V+Ü, 2+1)	3			
5. FS	· · · · · · ·	Grundpraktikum Organische Chemie für BSc poly Chemie (Pr, 8)	5	Grundpraktikum Physikalische Chemie für BSc poly Chemie (Pr, 6)	ю			11
2		c	-	4.	8		ſ	
9. F3		Bac	cuelo	Bacnelorarbeit				
2	2		5	18 + 8 = 26	96		14	75
1	3		3	0	3		5	2

* gemeinsame Veranstaltung mit dem BSc Chemie, aber geringerer Stunden- und ECTS-Umfang

Verpflichtende Abfolgen / Zulassungsvoraussetzungen

Bestimmte Lehrveranstaltungen dürfen erst belegt werden, wenn zuvor andere Lehrveranstaltungen erfolgreich abgeschlossen wurden:

Der Einführungskurs Chemisches Arbeiten im 1. Fachsemester vermittelt grundlegende, allgemeine Techniken sowie sicherheitsrelevantes Wissen für die Arbeit in chemischen Laboratorien. Darum ist die erfolgreiche Absolvierung dieses Kurses Voraussetzung für die Belegung aller weiteren Praktika des polyvalenten B.Sc. Chemie (mit Ausnahme des Physiklabors).

Für die Grundpraktika der verschiedenen Fachbereiche muss jeweils mindestens eine Vorlesung des entsprechenden Fachbereichs vorab erfolgreich abgeschlossen sein, da hier wichtige sicherheitsrelevante fachspezifische Kenntnisse vermittelt werden. Für das Grundpraktikum Organische Chemie ist zusätzlich die erfolgreiche Absolvierung des Grundpraktikums Anorganische Chemie Voraussetzung, da in diesem Arbeitstechniken im Bereich der analytischen und präparativen Chemie vermittelt werden, die für einen erfolgreichen Einstieg in das Grundpraktikum Organische Chemie erforderlich sind.

Lehr-/Lernformen

Die Lehrveranstaltungen bestehen aus Vorlesungen und Laborpraktika. Vorlesungen werden teilweise durch Übungen ergänzt, Laborpraktika werden teilweise durch Seminare ergänzt.

Prüfungsarten und - formate

Vorlesungen

In der Regel schließen Vorlesungs- Module mit einer Prüfung in Form einer Klausur ab, die 90 bis 120 min Dauer hat. Die Note der Klausur ist die Note für das Vorlesungs-Modul.

Praktika

Die Modulnote für Laborpraktika ergibt sich aus praktischen, schriftlichen und mündlichen Leistungen:

- praktische Leistungen bestehen in der erfolgreichen Durchführung von Laborversuchen
- schriftliche Leistungen sind Protokolle; Protokolle enthalten die Versuchsbeschreibung, die Dokumentation der Versuchsdurchführung und der Messwerte, die Fehlerrechnung und die Diskussion der Ergebnisse.
- mündliche Leistungen sind Labortestate; In praktikumsbegleitenden Labortestaten bzw. Platzkolloquien wird einerseits geprüft, ob die Studierenden sich im Vorfeld des Versuches mit den relevanten Sicherheitsaspekten vertraut gemacht haben, ob sie während des Versuches über den Ablauf des Experimentes orientiert sind, ob sie nach dem Versuch die relevanten Beobachtungen gemacht und Messdaten erfasst haben, sowie ob nach dem Experiment die grundsätzlichen Aspekte verstanden wurden. Labortestate bzw. Platzkolloquien sind mündliche Aussprachen von ca. 10 bis 20 Minuten Dauer.

Die genauen Leistungsanforderungen der jeweiligen Praktika finden sich ebenso wie die Zusammensetzung der Modulnoten in den jeweiligen Modulbeschreibungen.

Studienleistungen

Studienleistungen in Praktika bestehen in der regelmäßigen Teilnahme gemäß § 13, Abs. 2 der Rahmenprüfungsordnung Bachelor of Science, da die Kompetenzziele in praktischen Veranstaltungen nur in Präsenz erreicht werden können.

Die Studienleistungen in den Modulen Physikalische Chemie II und III bestehen jeweils im Erwerb von 50% der Gesamtpunktzahl der Übungen. Diese Studienleistung ist gleichzeitig jeweils die Zulassungsvoraussetzung für die Teilnahme an den Klausuren in den Vorlesungen Physikalische Chemie II und III – nur mit mindestens diesen Rechenkompetenzen kann die Klausur erfolgreich absolviert werden.

Die Studienleistung der Übung zur Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften umfasst den Erwerb von 50% der Gesamtpunktzahl der Übungen, die erfolgreiche Präsentation von mindestens einer Aufgabe (oder Teilaufgabe nach Ermessen des Tutors) aus der Heimarbeit oder eine in der Übung bearbeiteten Klausuraufgabe; regelmäßige Teilnahme an der Übung gemäß § 13, Abs. 2 der Rahmenprüfungsordnung Bachelor of Science.

Überfachliche Qualifikationsziele

In die Module des polyvalenten Zwei-Hauptfächer Bachelorstudiengangs Chemie ist der Erwerb überfachlicher Kompetenzen integriert:

- Wissenschaftliches Arbeiten unter Anleitung
- Fähigkeit zu selbstorganisiertem Lernen
- Kommunikationsfähigkeit / Vortragstechniken
- Teamfähigkeit
- Analyse-, Problemlöse- und Entscheidungskompetenzen
- Abstraktionsvermögen / transferierbare Fähigkeiten
- Gesellschaftliches Verantwortungsbewusstsein
- Fachdidaktische (Option Lehramt Gymnasien) bzw. berufsorientierte (Option Individuelle Studiengestaltung) Fähigkeiten in selbst gewählten Kompetenzbereichen

Berufliche Perspektiven

Im Teilstudiengang Chemie werden neben den naturwissenschaftlichen Grundlagen in Chemie die für den Beruf des Chemielehrers/der Chemielehrerin notwendigen theoretischen und praktischen Fähigkeiten in einem thematisch sehr breiten, das gesamte Spektrum der Chemie abdeckenden Fächerangebot vermittelt. Darüber hinaus erfolgt eine Vertiefung in einem der Wahlfächer Biochemie oder Makromolekulare Chemie und im sechsten Semester wird eine Bachelorarbeit angefertigt.

Der nach erfolgreichem Studium verliehene akademische Grad "Bachelor of Science" (B.Sc.) bildet den ersten berufsqualifizierenden Abschluss und eröffnet neben einem Wechsel in die Berufstätigkeit die Möglichkeit der wissenschaftlichen Weiterqualifikation in einem konsekutiven Master-Studiengang, z.B. dem Master of Education in Freiburg. Je nach belegtem Wahlfach kann auch einer der Studiengänge M.Sc. Sustainable Materials oder M.Sc. Biochemistry and Biophysics an das Studium des polyvalenten Zwei-Hauptfächer Bachelorstudiengangs Chemie angeschlossen werden.

Durch den hohen Anteil an praktischer Ausbildung wird außerdem schon mit dem Bachelorabschluss eine berufliche Qualifikation für praktische Tätigkeiten im Labor, beispielsweise in der Analytik, erreicht.

Name des Moduls	Nummer des Moduls
Allgemeine und Anorganische Chemie	08LE05MO-2HF-AAC
Verantwortliche/r	
Prof. Dr. Harald Hillebrecht Prof. Dr. Ingo Krossing	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Allgemeine und Anorganische Chemie	Vorlesung	Pflicht	5,0	3,0	210 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden sind mit Grundlagen der Allgemeinen Chemie vertraut und können wichtige Grundkonzepte der Chemie erklären. Weiterhin verfügen Sie über ein Basiswissen zur Stoffchemie der Elemente des s-, p- und d-Blocks.

Zusammensetzung der Modulnote

Die Modulnote ist die Note für die Klausur Allgemeine und Anorganische Chemie.

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls Nummer des Moduls		
Allgemeine und Anorganische Chemie	08LE05MO-2HF-AAC	
Veranstaltung		
Allgemeine und Anorganische Chemie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID010019	

ECTS-Punkte	5,0
Arbeitsaufwand	210 h
Präsenzstudium	75 h
Selbststudium	135 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Vorlesung beinhaltet Grundlagen der Allgemeinen Chemie wie Atombau, Periodensystem der Elemente, Valenz, Bindungstheorien, Molekülbau, Kristallgitter/Festkörper, Thermodynamik und Kinetik von Reaktionen, Gastheorie, Säure-Base-Reaktionen, Komplexchemie, Redoxreaktionen und Elektrochemie. Darüber hinaus wird die einfache anorganische Stoffchemie der Haupt- und Nebengruppenelemente behandelt. Neben den inhaltlichen Aspekten werden in gesonderten Seminaren wichtige Sicherheitskonzepte für die Arbeit im chemischen Laboratorium und den Umgang mit Gefahrstoffen vermittelt.

Zu erbringende Prüfungsleistung

Klausur.

Studierende des Polyvalenten Bachelor erhalten eine gesonderte Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

- C. Mortimer, U. Müller, Chemie, Thieme
- E. Riedel, C. Janiak, Anorganische Chemie, de Gruyter
- N. Wiberg (Hrsg.), Holleman / Wiberg Anorganische Chemie, de Gruyter

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Bemerkung / Empfehlung

Die Experimentalvorlesung am Dienstag und Mittwoch richtet sich an Studierende des Ein-Fach-B.Sc. Chemie und des polyvalenten B.Sc. Chemie. Die Klausur für den polyvalenten B.Sc. Chemie bezieht sich ausschließlich auf die Experimentalvorlesung.

Die Vorlesung am Freitag dient der Vertiefung und Ergänzung der Experimentalvorlesung.

Für den B.Sc. Chemie gilt: Die Inhalte dieser vertiefenden Vorlesung sind klausurrelevant. Für den polyvalenten B.Sc. Chemie gilt: Die Teilnahme an der Vertiefungsvorlesung wird empfohlen, ist aber freiwillig. Die Inhalte sind nicht Teil der Klausur für Studierende des polyvalenten B.Sc. Chemie. Wegen der unterschiedlichen ECTS-Zahl B.Sc. Chemie vs. polyvalenter B.Sc. Chemie unterscheidet sich die Anzahl der in der Klausur zu bearbeitenden Aufgaben.

Teilnahme an den beiden Kenntnisprüfungen für den Zugang zum "Einführungskurs Chemisches Arbeiten (EFK)".

Die Kenntnisprüfung besteht aus zwei Klausuren im November/Dezember. Neben einem Bestehen der Abschlussklausur zur Vorlesung stellt das Bestehen der Kenntnisprüfung eine weitere Möglichkeit dar, die Zugangsvoraussetzung für das Praktikum Einführungskurs Chemisches Arbeiten zu erfüllen. Hierfür gilt die Kenntnisprüfung als bestanden, wenn insgesamt 50% der zu vergebenen Punkte erreicht wurden. Die erste Klausur geht hierbei mit 33%, die zweite mit 67% gewichtet ein. Die Anmeldung zu den Kenntnisprüfungen erfolgt beim Praktikumsleiter des Moduls Einführungskurs Chemisches Arbeiten.

Name des Moduls	Nummer des Moduls
Einführungskurs Chemisches Arbeiten	08LE05MO-2HF-EFK
Verantwortliche/r	
Prof. Dr. Harald Hillebrecht Prof. Dr. Ingo Krossing Dr. Harald Scherer	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Die Zugangsvoraussetzung zum Modul kann auf zwei Weisen erfüllt werden:

- 1. Bestehen der Kenntnisprüfung zur Vorlesung Allgemeine und Anorganische Chemie: diese gilt als bestanden, wenn insgesamt 50% der zu vergebenen Punkte erreicht wurden. Dabei wird die erste Klausur mit 33%, die zweite mit 67% gewichtet;
- 2. Bestehen der Abschlussklausur zur Vorlesung Allgemeine und Anorganische Chemie.

Die Anmeldung zu den Kenntnisprüfungen erfolgt bei der Praktikumsleitung des Moduls Einführungskurs Chemisches Arbeiten.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Einführungskurs Chemisches Arbeiten	Praktikum	Pflicht	2,0	4,0	70 h
Einführungskurs Chemisches Arbeiten (Seminar)	Seminar	Pflicht	1,0	2,0	20 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können grundlegende chemische Reaktionen und den Verlauf einfacher Experimente beschreiben und anhand allgemeiner chemischer Prinzipien erklären. Sie können mit üblichen Laborgeräten und Chemikalien unter Beachtung des Gefahr- und Umweltschutzes umgehen und ihre Experimente dokumentieren. Sie erlernen analytische Methoden, können einfache Verfahren selbstständig und exakt durchführen und die Messergebnisse sinnvoll interpretieren.

Zu erbringende Prüfungsleistung

Schriftliche Prüfungsleistung, mündliche Präsentation, praktische Leistung.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit.

Zusammensetzung der Modulnote

In die Bewertung gehen die mündlichen Kolloquien mit 30%, die Protokolle mit 40% und die praktische Note mit 30% ein.

Die Zahl der zu absolvierenden Kolloquien wird bei der Platzübernahme bekanntgegeben.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Einführungskurs Chemisches Arbeiten	08LE05MO-2HF-EFK
Veranstaltung	
Einführungskurs Chemisches Arbeiten	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID010022
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	2,0
Arbeitsaufwand	70 h
Präsenzstudium	40 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Das Praktikum beinhaltet Versuche zu den Themen: Allgemeine Laboratoriumstechnik, chemische Trennverfahren, chemisches Gleichgewicht (Löslichkeitsprodukt, Thermodynamik und Kinetik von Reaktionen), Säure-Base-Reaktionen, Ionenverbindungen, kovalente Verbindungen, Redoxreaktionen sowie Fällungs- und Komplexbildungsreaktionen. Die Studierenden erlernen den sicheren Umgang mit Chemikalien, Grundlagen der Arbeitssicherheit und des Brandschutzes sowie die korrekte Entsorgung von Chemikalien.

Zu erbringende Prüfungsleistung

Schriftliche Prüfungsleistung, mündliche Präsentation, praktische Leistung.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit.

Literatur

- a) C. Mortimer, U. Müller, Chemie, Thieme
- b) Jander/Blasius, Anorganische Chemie 1 & 2, Hirzel.

Teilnahmevoraussetzung laut Prüfungsordnung

Die Zugangsvoraussetzung zum Modul kann auf zwei Weisen erfüllt werden:

- 1. Bestehen der Kenntnisprüfung zur Vorlesung Allgemeine und Anorganische Chemie: diese gilt als bestanden, wenn insgesamt 50% der zu vergebenen Punkte erreicht wurden. Dabei wird die erste Klausur mit 33%, die zweite mit 67% gewichtet;
- 2. Bestehen der Abschlussklausur zur Vorlesung Allgemeine und Anorganische Chemie.

↑

Name des Moduls	Nummer des Moduls
Einführungskurs Chemisches Arbeiten	08LE05MO-2HF-EFK
Veranstaltung	
Einführungskurs Chemisches Arbeiten (Seminar)	
Veranstaltungsart	Nummer
Seminar	08LE05S-ID010307
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	1,0
Arbeitsaufwand	20 h
Präsenzstudium	20 h
Selbststudium	0 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

- 1. Einführungsveranstaltung zum EFK (Pflichtveranstaltung mit Anwesenheitsliste)
- 2. Sicherheitsseminare zum EFK (Pflichtveranstaltungen mit Anwesenheitsliste): Sicherheitsbelehrung, Gefahrstoffe, Einführung in die Toxikologie, Brandschutz, Umgang mit Gasen, Erste Hilfe im Labor, Entsorgung und Umweltschutz
- 3. Begleitseminare zum EFK: Arbeiten im Labor, Geräte, Trennen, Erhitzen, Vakuum, GLP, Protokollführung Synthese
- 4. Einführung zum Praktikum (Pflichtveranstaltung mit Anwesenheitsliste): Verhalten im Praktikum & Regularien, Sicherheitsfilm, Übergabe der persönlichen Schutzausrüstung, Platzübernahme

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit, kontrolliert per Anwesenheitsliste.

Literatur

Jander/Blasius, Anorganische Chemie 1 & 2, Hirzel.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

↑

me des Moduls Nummer des Moduls			
Grundpraktikum Anorganische Chemie	08LE05MO-2HF-AGP		
Verantwortliche/r			
Prof. DrIng. Caroline Röhr			
Fachbereich / Fakultät			
Fakultät für Chemie und Pharmazie			

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Semesterwochenstunden (SWS)	7,0
Mögliche Fachsemester	2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Allgemeine und Anorganische Chemie

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Kurspraktikum Anorganische und Analytische Chemie für Lehramtskandidaten ("Grundpraktikum Anorganische Chemie Lehramt")	Praktikum	Pflicht	3,0	6,0	90 h
Seminar zum Kurspraktikum Anorganische und Analytische Chemie für Studierende Lehramt Chemie (Seminar zum "Grund- praktikum Anorganische Chemie Lehramt")	Seminar	Pflicht	1,0	1,0	30 h

Lern- und Qualifikationsziele der Lehrveranstaltung

An Beispielen aus der qualitativen und quantitativen analytischen Chemie haben die Studierenden gelernt, grundlegende chemische Reaktionen und den Verlauf einfacher Experimente zu beschreiben, auf Basis allgemeiner chemischer Prinzipien zu erklären und die experimentellen Ergebnisse zu dokumentieren. Sie können mit wichtigen Laborgeräten und Chemikalien unter Beachtung des Schutzes von Mensch und Umwelt umgehen. Sie haben die Praxis wichtiger quantitativer analytischer sowie präparativer Methoden erlernt, können einfache Verfahren auf Basis der Literatur selbstständig und exakt durchführen und die erhaltenen Messergebnisse sinnvoll interpretieren.

Zusammensetzung der Modulnote

Praktische Arbeit (insbesondere Qualität der durchgeführten Synthesen und Analysen): ~30%, schriftliche Ausarbeitungen (Protokolle): ~30%, mündliche Präsentationen (Kolloquien und Seminarvortrag): ~40%.

Literatur

Webseite mit allen Informationen inkl. Literatur und Skript, das jedes lehrbuch ersetzt: http://ruby.chemie.uni-freiburg.de/Vorlesung/nebenfachpraktikum.html

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls		
Grundpraktikum Anorganische Chemie	08LE05MO-2HF-AGP		
Veranstaltung			
Kurspraktikum Anorganische und Analytische Chemie für Lehramtskandidaten ("Grundpraktikum Anorganische Chemie Lehramt")			
Veranstaltungsart	Nummer		
Praktikum	08LE05P-ID010024		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	90 h
Selbststudium	0 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Das Praktikum beinhaltet die Vermittlung grundlegender Arbeitstechniken der präparativen anorganischen Chemie über einführende und fortgeschrittene Synthesen aus den Bereichen Molekül-, Komplex-, Organometall-, Festkörper- und Elektrochemie. Die erhaltenen Produkte werden mittels spektroskopischer (IR, Raman, NMR, UV/Vis) und röntgenographischer (Pulverdiffraktometrie) Methoden charakterisiert. In Protokollen werden Versuchsdurchführung und experimentelle Ergebnisse dokumentiert und interpretiert. Konzepte und theoretische Grundlagen zu den Synthesen werden in begleitenden Kolloquien erarbeitet. Im Praktikumsteil "Instrumentelle Analytik" werden grundlegende instrumentelle Methoden (HPLC, Ionenchromatographie, Voltammetrie/Polarographie, Fließinjektionsanalyse, UV/Vis) vermittelt.

Zu erbringende Prüfungsleistung

Praktische Arbeit (insbesondere Synthesen und Analysen), schriftliche Ausarbeitungen (Protokolle) und mündliche Präsentationen (Kolloquien).

Zu erbringende Studienleistung

Regelmäßige Anwesenheit.

Literatur

Einführende Literatur:

- A. Holleman / E. Wiberg: Lehrbuch der Anorganischen Chemie, Walter de Gruyter, 102. Auflage, 2007 und Anorganische Chemie, Walter de Gruyter, 103. Auflage, 2017
- M. Binnewies: Allgemeine und Anorganische Chemie, Springer Spektrum, 3. Auflage, 2016
- J. Huheey / E. Keiter: Anorganische Chemie, de Gruyter, 5. Auflage, 2014
- C. Housecroft / E. Sharpe: Anorganische Chemie, Pearson Studium, 2. Auflage, 2006 und Inorganic Chemistry, Pearson,4th Edition, 2012
- E. Riedel: Allgemeine und Anorganische Chemie, de Gruyter, 12. Auflage, 2019 und Moderne Anorganische Chemie, de Gruyter, 5. Auflage, 2018

Weiterführende Literatur:

- R. Steudel: Chemie der Nichtmetalle, De Gruyter, 4. Auflage, 2014
- A. West: Grundlagen der Festkörperchemie, VCH-Verlag, 1. Auflage, 1992 und Basic Solid State Chemistry, Wiley, 2nd Edition, 2012
- U. Müller: Anorganische Strukturchemie, Teubner, 6. Auflage, 2008
- C. Elschenbroich: Organometallchemie, Teubner, 6. Auflage, 2008

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Allgemeine und Anorganische Chemie

Name des Moduls	Nummer des Moduls		
Grundpraktikum Anorganische Chemie	08LE05MO-2HF-AGP		
Veranstaltung			
Seminar zum Kurspraktikum Anorganische und Analytische Chemie für Studierende Lehramt Chemie (Seminar zum "Grundpraktikum Anorganische Chemie Lehramt")			
Veranstaltungsart	Nummer		
Seminar	08LE05S-ID010025		

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	25 h
Selbststudium	5 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Im Seminar erarbeiten die Studierenden Konzepte und theoretische Grundlagen zu ausgewählten Themen des Praktikums und stellen diese in einer kurzen Präsentation (10 min) mit anschließender Diskussion vor.

Zu erbringende Prüfungsleistung

Mündliche Präsentation (Seminarvortrag).

Zu erbringende Studienleistung

Regelmäßige Anwesenheit.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Anorganische Chemie I	08LE05MO-2HF-ACI
Verantwortliche/r	
Prof. Dr. Ingo Krossing	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	3
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Anorganische Chemie I	Vorlesung	Pflicht	4,0	3,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können die Chemie der Nichtmetalle mit Hilfe von grundlegenden anorganischen Konzepten beschreiben und haben die Stoffchemie der nichtmetallischen Elemente, insbesondere des Bors, des Siliziums, des Stickstoffs, des Phosphors, des Sauerstoffs, des Schwefels, des Fluors und der schweren Halogene erlernt. Konzepte, die vertieft vermittelt und erlernt werden sollen sind die MO-Theorie, die (Gruppen-)Elektronegativität, das HSAB-Konzept und die Lewis-Säure-Base-Theorie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur zur Vorlesung Anorganische Chemie I.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie B.Sc. Regio Chimica

Name des Moduls Nummer des Moduls			
Anorganische Chemie I	08LE05MO-2HF-ACI		
Veranstaltung			
Anorganische Chemie I			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID010013		

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	45 h
Selbststudium	75 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Vorlesung beinhaltet die Chemie der Nichtmetalle und ihrer Verbindungen, geordnet nach den Gruppen des Periodensystems. Aufbauend auf der Vorlesung "Allgemeine und Anorganische Chemie" werden die dort eingeführten grundlegenden Prinzipen und Konzepte zur Erklärung von Struktur, Stabilität und Reaktivität der Verbindungen bei ausgewählten Stoffklassen vertieft sowie Eigenschaften und Bedeutung der jeweiligen Elemente und deren Verbindungen für die Technik sowie großtechnische Synthesen behandelt. Die Stoffgebiete umfassen die Chemie des Wasserstoffs, der Edelgase, der Halogene, Chalkogene, Pentele, der leichten Tetrele (C, Si) und von Bor. Die bei den jeweiligen Stoffklassen angewandten Prinzipien und Konzepte umfassen u.a.: Säure-Base-Theorien nach Brønsted und Lewis, Molekülorbital-(MO-)Theorie, VSEPR-Modell, Hyperkoordination, Hyperkonjugation, Redoxreaktionen, Mehrzentrenbindungen, Wade-Regeln.

Zu erbringende Prüfungsleistung

Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

R. Steudel, Nichtmetallchemie, deGruyter

C. Housecroft, Anorganische Chemie, Pearson

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Anorganische Chemie II	08LE05MO-2HF-ACII
Verantwortliche/r	
Prof. DrIng. Caroline Röhr	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	4
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS		Arbeits- aufwand
Anorganische Chemie II	Vorlesung	Pflicht	4,0	3,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können die Chemie der Metalle und der Nichtmetalle mit Hilfe von grundlegenden anorganischen Konzepten beschreiben. Sie können einfache anorganische Synthesen selbstständig durchführen. Sie können die Ergebnisse strukturchemischer Analysemethoden an Ihren Produkten interpretieren und fortgeschrittene quantitative Verfahren selbst durchführen. Sie verstehen die physikalisch-chemischen Eigenschaften dieser Stoffe und können Ihre Bedeutung für technische Anwendungen erläutern.

Benotung

Die Modulnote ist die Note der Klausur zur Vorlesung Anorganische Chemie II.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie B.Sc. Regio Chimica

Name des Moduls	Nummer des Moduls
Anorganische Chemie II	08LE05MO-2HF-ACII
Veranstaltung	
Anorganische Chemie II	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID010004

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	45 h
Selbststudium	75 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	4
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Vorlesung behandelt die Chemie der metallischen Elemente geordnet nach den Gruppen des Periodensystems. Aufbauend auf der Vorlesung "Allgemeine und Anorganische Chemie" werden die dort eingeführten grundlegenden Prinzipen und Konzepte zur Erklärung von Struktur, physikalischen Eigenschaften und Reaktivität der Verbindungen bei ausgewählten Stoffklassen vertieft sowie Eigenschaften und Bedeutung der jeweiligen Elemente und deren Verbindungen für die Geochemie sowie großtechnische Prozesse behandelt.

Das Stoffgebiet umfasst die Chemie der Alkalimetalle, Erdalkalimetalle, Triele (Al, Ga, In, TI),der Lanthanoide sowie der Übergangsmetalle (Gruppen 3-12). Die angewandten und vertieften Prinzipien und Konzepte beinhalten u. a.: Bauprinzipien von Salzen, Strukturen von Metallen und einfachen Legierungen, chemische Bindung in Festkörpern, dichteste Packungen, Kristallfeldtheorie, elektronische Übergänge.

Zu erbringende Prüfungsleistung

Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

E. Riedel, C. Janiak, Anorganische Chemie, deGruyter

http://ruby.chemie.uni-freiburg.de/Vorlesung/metalle 0.html

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Organische Chemie I	08LE05MO-2HF-OCI
Verantwortliche/r	
Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Organische Chemie I	Vorlesung	Pflicht	4,0	3,0	105 h
Organische Chemie I	Übung	Pflicht	1,0	1,0	45 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können die Bedeutung der Grundlagen der Allgemeinen Chemie für die Organische Chemie erklären. Sie können organische Verbindungen nach Maßgabe der darin enthaltenen funktionellen Gruppen in Substanzklassen einteilen. Sie unterscheiden Eigenschaften und Reaktivitäten organischer Verbindungen und erwerben chemiespezifisches Allgemeinwissen zum Einsatz wichtiger organischer Stoffe in Alltag, Natur und Technik.

Zusammensetzung der Modulnote

Die Modulnote ist die Note für die Klausur Organische Chemie I.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Organische Chemie I	08LE05MO-2HF-OCI
Veranstaltung	
Organische Chemie I	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020071

ECTS-Punkte	4,0
Arbeitsaufwand	105 h
Präsenzstudium	45 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Der Aufbau und die Vielfalt organischer Verbindungen werden vermittelt. Wichtige Substanzklassen der Organischen Chemie werden eingeführt.

Anbei eine Auflistung der prüfungsrelevanten Themen:

Einführung in die Organische Chemie

- Beispiele, Struktur, Eigenschaft, Reaktivität, Mechanismus, Synthese
- Geschichte der Organischen Chemie, Wöhlersche Harnstoffsynthese
- Heutiger Begriff der OC
- Periodensystem der Elemente, Kohlenstoff-Allotrope
- Atomstruktur
- Bindungsarten
- Hybridisierung
- Bindungsspaltung, Oxidationszahlen, Konzept der funktionellen Gruppen
- Charakterisierung einer reinen Substanz

Gesättigte Kohlenwasserstoffe

- Homologe Reihe der Alkane, Nomenklatur
- Eigenschaften, Struktur und Vorkommen von gesättigten Kohlenwasserstoffen
- Wechselwirkungen in und zwischen Alkanen
- Isomerie, Konfiguration, Konstitution und Konformation
- Newman-Projektionen, Konformationsanalysen
- Cyclische Alkane, Ringgrößen
- Halogenierung von Alkanen, Reaktionsprofile und Mechanismen
- Strukturermittlung organischer Verbindungen, qualitative und quantitative Nachweise
- Methan, Vorkommen, Gewinnung, Synthese, Verbrennung
- Thermodynamik vs. Kinetik
- Synthesegas
- Höhere Alkane, Struktur, Bindung, Reaktivität, Eigenschaften, Hyperkonjugation
- Gleichgewicht und Triebkraft
- Gewinnung von Alkanen, Erdöl, Erdgas, Vorkommen von Erdöl

- Trennung von Alkanen, fraktionierende Destillation, Gas- und Flüssigchromatographie
- Katalytisches und Hydro-Cracken

Cycloalkane

- Struktur, Bindungseigenschaften, physikalische Eigenschaften, Nomenklatur, Spannung
- Konformationsanalyse (Sessel, Twist, Boot als ÜZ), Gleichgewichtsverteilungen

Grundlagen der Stereochemie

- Arten der Isomerie
- Symmetrie, Symmetrieelemente und Chiralität
- Verschiedene Arten der Chiralität
- Eigenschaften chiraler Verbindungen
- Enantiomerenreinheit
- Absolute Konfiguration, Fischer-Projektion
- Nomenklatur nach Cahn, Ingold und Prelog (CIP)

Halogenalkane

- funktionelle Gruppe, Struktur, Bindungsverhältnisse, Reaktivität, Nomenklatur
- Darstellung von Halogenalkanen, Radikalreaktionen, Mechanismus, Geschwindigkeit, Hammond-Postulat
- Physikalische Eigenschaften, Dipolmomente
- Anwendungen von Halogenalkanen (z.B. Kühlmittel, Reinigunsmittel, Sauerstoffabsorber)
- Nucleophile Substitution mit Halogenalkanen, S_N-Reaktionen, Mechanismen, Kinetik, Elementarreaktionen, Molekularität, Energieprofile, Übergangszustände, Lösungsmitteleinfluß
- Stereochemie von S_N-Reaktionen, Stereoselektivität, Stereospezifität, Stereokonvergenz, Enantiomere, Diastereomere
- Chiralität, Symmetrie
- Vergleich der Eigenschaften von Enantiomeren und Diastereomeren
- Umwandlung von Halogenalkanen in Metallorganyle
- Li-Organyle und Grignard-Verbindungen, Darstellung, Mechanismus, Anwendung

Grundlagen der NMR-Spektroskopie

- Strukturaufklärung einfacher organischer Moleküle, Symmetriebetrachtungen
- NMR-aktive Kerne, 1H und 13C
- Chemische Verschiebung, Integral, Kopplungsmuster und Kopplungskonstanten

Alkene

- Struktur, Bindungseigenschaften, Nomenklatur, E/Z-Isomerie
- Relative Stabilität und Hydrierwärmen
- E1- und E2-Reaktion, Mechanismus, Kinetik, Regioselektivität
- Konzertierte und sequentielle Additionen von A-B über Doppelbindungen
- Polymerisation und Polymere

Diene und Polyene

- Bindungsverhältnisse in Dienen und Polyenen, Nomenklatur
- Konjugierte, kumulierte und isolierte Diene, Allene
- Stabilisierung durch Konjugation, VB- und MO-Modell
- HOMO-LUMO Übergänge, UV/VIS, Chromophore, Farbstoffe
- Terpene

Alkine

- Struktur, Bindungseigenschaften, Nomenklatur
- Acidität, C-Nucleophilie
- Konzertierte und sequentielle Additionen von A-B über Dreifachbindungen

Aromatizität

Besondere Stabilität von Aromaten

- Dearomatisierungsreaktionen
- Hydrierwärmen
- Hückel-MO-Theorie, Aromaten, Antiaromaten, Frost-Musulin-Diagramme für verschiedene Beispiele, Hückel-Regel, Bindungslängen, Nomenklatur
- Aromatische Heterozyklen
- Ringstromeffekt

Zu erbringende Prüfungsleistung

Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

K. P. C. Vollhardt, N. E. Schore, Organische Chemie, VCH, Weinheim, 2020, 6. Aufl.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Organische Chemie I	08LE05MO-2HF-OCI	
Veranstaltung		
Organische Chemie I		
Veranstaltungsart	Nummer	
Übung	08LE05Ü-ID020067	

ECTS-Punkte	1,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Begleitende und vertiefende Übungen zur Vorlesung Organische Chemie I.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Keine.

Literatur

K. P. C. Vollhardt, N. E. Schore, Organische Chemie, VCH, Weinheim, 2020, 6. Aufl.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Organische Chemie II	08LE05MO-2HF-OCII
Verantwortliche/r	
Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	3
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung	
Keine.	

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS		Arbeits- aufwand
Organische Chemie II	Vorlesung	Pflicht	4,0	3,0	105 h
Organische Chemie II	Übung	Pflicht	1,0	1,0	45 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können die Bedeutung der Grundlagen der Allgemeinen Chemie für die Organische Chemie erklären. Sie können organische Verbindungen nach Maßgabe der darin enthaltenen funktionellen Gruppen in Substanzklassen einteilen. Sie unterscheiden Eigenschaften und Reaktivitäten organischer Verbindungen und erwerben chemiespezifisches Allgemeinwissen zum Einsatz wichtiger organischer Stoffe in Alltag, Natur und Technik.

Die Module Organische Chemie I und II gehören inhaltlich zusammen und haben die gleichen Qualifikationsziele, unterscheiden sich allerdings in den behandelten funktionellen Gruppen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note für die Klausur Organische Chemie II.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

B.Sc. Regio Chimica

Name des Moduls	Nummer des Moduls		
Organische Chemie II	08LE05MO-2HF-OCII		
Veranstaltung			
Organische Chemie II			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID020001		
Veranstalter			
Institut für Organische Chemie			

ECTS-Punkte	4,0
Arbeitsaufwand	105 h
Präsenzstudium	45 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	3
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Anschließend an die Vorlesung Organische Chemie I werden weitere wichtige Substanzklassen der Chemie (z.B. Alkohole, Amine, Carbonyl-, Carboxyl-Verbindungen, Aminosäuren und Kohlenhydrate) eingeführt und erläutert.

Anbei eine Auflistung der prüfungsrelevanten Themen:

Aromatenchemie

- Elektrophile aromatische Substitution mit Beispielen
- Mechanismus, Energetik, Positionsselektivität
- Induktive und mesomere Effekte
- Nucleophile Substitution an Aromaten mit Beispielen
- Additions-Eliminierungsmechanismus, Unterschied zu SN2 und SN1
- Meisenheimer-Komplexe
- Reaktivfarbstoffe
- Reaktionen in der benzylischen Position mit Beispielen
- Acidität von Arylmethanen
- Benzylständige Kationen
- Triphenylmethan-Farbstoffe

Alkohole und Thiole

- Struktur, Bindungsverhältnisse, Nomenklatur, Eigenschaften
- Löslichkeit und Lösevermögen
- Säure/Base-Eigenschaften, pKS-Werte
- Ausgewählte Beispiele (Gewinnung, Synthese, Anwendungen, Toxizität): Methanol, Ethanol, Phenol, alkoholische Getränke
- Reaktionen der OH-Bindung von Alkoholen (Ester, Sulfate, Sulfonate, Nitrate, Phosphate)
- Oxidation von Alkoholen

- Oxidative Spaltung von Glykolen
- Reaktionen der SH-Bindung, Oxidation, Bildung von Disulfiden, Substitution
- Reaktionen der CO-Bindung von Alkoholen, Polarisierung, Aktivierung durch Derivatisierung

Ether und Sulfide

- Struktur, Bindungseigenschaften, physikalische Eigenschaften, Nomenklatur
- Prinzipien der Extraktion
- Kronenether
- Reaktionen von Ethern, Etherspaltung, Oxidation zu Hydroperoxiden
- Reaktive Ether, Epoxide, Ringspannung, Verwendung in Synthesen, Aktivierung mit Lewis-Säuren

Amine

- Struktur, Bindungseigenschaften, physikalische Eigenschaften, Nomenklatur
- Basizität/Acidität von Aminen
- Anilin
- Darstellungsmethoden

Aldehyde und Ketone

- Die Carbonylgruppe, Struktur, Bindungsverhältnisse, Reaktivität, Nomenklatur
- Darstellung von Carbonylverbindungen via Oxidation, C-C-Verknüpfungen
- Oxidation von Alkoholen und Aldehyden
- Reaktionen der Carbonylgruppe mit schwachen Nucleophilen
- Acetale als Schutzgruppen
- Reaktionen mit starken Nucleophilen
- Reaktionen neben der Carbonylgruppe
- **α**-CH Acidität, Enole, Enolate, Tautomerie
- Methylenaktive Verbindungen

Carbonsäuren und Carboxylate

- Strukturen, Bindungsverhältnisse, Acidität, Nomenklatur
- Darstellung von Carbonsäuren
- Carbonsäureester, Vorkommen, Anwendung
- Fette, Öle und Wachse
- Reaktionen von Carbonsäuren (Veresterung, Verseifung, Reduktion)
- Reaktionen neben der Carboxylgruppe
- Dicarbonsäuren
- Hydroxycarbonsäuren (Beispiele aus Natur und Technik, Lactone)
- Ketocarbonsäuren

Weitere Carbonsäurederivate

- Acylierungsmittel (Vergleich Acylchloride, Anhydride, Thioester, Ester, Amide, Carboxylate)
- Darstellung von Säurechloriden und Folgereaktionen
- Darstellung von Säureanhydriden und Folgereaktionen
- Darstellung von Amiden und Folgereaktionen
- Darstellung von Nitrilen und Folgereaktionen

Organische Derivate der Kohlensäure inklusive Heterokumulene

- Struktur, Bindungsverhältnisse, Nomenklatur
- Strukturmerkmale instabiler Kohlensäurederivate und Reaktionen
- Stabile Kohlensäurederivate
- Ausgewählte Heterokumulene

Aminosäuren, Peptide und Proteine

- Struktur, Nomenklatur, Stereochemie, Ladungszustände (isoelektrischer Punkt)
- Strukturen proteinogener Aminosäuren
- Synthese von Aminosäuren
- Peptide, Amidbindung, Struktur und Funktionsvielfalt
- Strategische Synthese von Peptiden, Schutzgruppen
- Merrifield-Festphasensynthese

■ Primär-, Sekundär, Tertiär- und Quartärstruktur, Disulfidbrücken

Kohlenhydrate, Glycoside, Oligo- und Polysaccharide

- Bauprinzipien, Verknüpfungen, Aldosen, Ketosen
- Konfigurationszuordnung, Fischer-Schreibweise, Haworth-Projektion, Stereochemie
- C5- und C6-Aldosen (Beispiele)
- Anomerer Effekt
- Di- und Oligosaccharide (Beispiele)
- Polysaccharide (Beispiele)
- Nachweisreaktionen (Fehling, Silberspiegel)

Nukleinsäuren

- Strukturen von DNA und RNA, Unterschiede, Funktionen
- Nukleobasen und Basenpaarung, Wasserstoffbrücken
- Doppelhelix-Struktur der DNA
- Basentripletts und genetischer Code
- Replikation der DNA

Zu erbringende Prüfungsleistung

Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

K. P. C. Vollhardt, N. E. Schore, Organische Chemie, VCH, Weinheim, 2020, 6. Aufl.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Organische Chemie II	08LE05MO-2HF-OCII
Veranstaltung	
Organische Chemie II	
Veranstaltungsart	Nummer
Übung	08LE05Ü-ID020002
Veranstalter	
Institut für Organische Chemie	

ECTS-Punkte	1,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	3
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

In	ha	lte

Begleitende und vertiefende Übungen zur Vorlesung Organische Chemie II.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Keine.

Literatur

K. P. C. Vollhardt, N. E. Schore, Organische Chemie, VCH, Weinheim, 2020, 6. Aufl.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Grundpraktikum Organische Chemie	08LE05MO-2HF-OGP
Verantwortliche/r	
Prof. Dr. Bernhard Breit Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	5
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Grundpraktikum Anorganische Chemie
- Organische Chemie I oder II

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS		Arbeits- aufwand
Organisch-Chemisches Grundpraktikum Lehramt	Praktikum	Pflicht	5,0	8,0	150 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen grundlegende Arbeitsweisen und -techniken der präparativen Organischen Chemie. Sie verfügen über Grundlagenkenntnisse der molekularen Struktur organischer Verbindungen.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus:

- 35% durch den Durchschnitt der 15 Präparate
- 25% durch den Durchschnitt aller 15 Protokollnoten
- 40% durch Versuchstestate

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls Nummer des Moduls			
Grundpraktikum Organische Chemie	08LE05MO-2HF-OGP		
Veranstaltung			
Organisch-Chemisches Grundpraktikum Lehramt			
Veranstaltungsart Nummer			
Praktikum	08LE05P-ID020070		

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Präsenzstudium	120 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	5
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Vermittlung grundlegender Arbeitsweisen und -techniken der präparativen Organischen Chemie. Vermittlung von Grundlagenkenntnissen der molekularen Struktur organischer Verbindungen.

15 Präparate werden bearbeitet.

Zu erbringende Prüfungsleistung

- 15 Präparate
- 15 Protokolle
- Versuchstestate

Zu erbringende Studienleistung

Regelmäßige Anwesenheit.

Literatur

- R. Brückner, "Reaktionsmechanismen: Organische Reaktionen, Stereochemie, moderne Synthesemethoden", Spektrum Akademischer Verlag, 2004, 3. Aufl.;
- R. Brückner et al., "Praktikum Präparative Organische Chemie", Spektrum Akademischer Verlag, 2008, 1. Aufl.:
- K. Schwetlick, "Organikum: Organisch-chemisches Grundpraktikum", 2015, Wiley-VCH, 24. Aufl.

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Grundpraktikum Anorganische Chemie
- Organische Chemie I oder II

Name des Moduls	Nummer des Moduls
Physikalische Chemie I	08LE05MO-2HF-PCI
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS		Arbeits- aufwand
Physikalische Chemie I	Vorlesung	Pflicht	2,0	3,0	60 h
Physikalische Chemie I	Übung	Pflicht	4,0	2,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen die Grundlagen der Thermodynamik. Sie haben ein Grundverständnis für thermodynamische Problemstellungen und die Übertragung der theoretischen Kenntnisse auf praktische Probleme.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur Physikalische Chemie I.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Physikalische Chemie I	08LE05MO-2HF-PCI
Veranstaltung	
Physikalische Chemie I	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID030008_n

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	45 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

System; Phase; Gleichgewicht; intensive und extensive Größen; SI-Basiseinheiten; Größen und Einheiten in der Physikalischen Chemie; Angaben von Messgrößen; Notation mathematischer Formeln; Temperatur; Nullter Hauptsatz der Thermodynamik; Zustandsfunktionen; totale Differentiale; Zustandsgleichung idealer Gase; Kinetische Gastheorie und Maxwell-Boltzmann-Geschwindigkeitsverteilung; reale Gase; isotherme, isochore, adiabatische und isobare Prozesse; Erster Hauptsatz der Thermodynamik; Arbeit und Wärme; Innere Energie und Enthalpie und deren Ableitung nach der Temperatur; Wärmekapazitäten; Bildungsenthalpien und Hessscher Satz; Carnot-Kreisprozess; Wirkungsgrad; Wärmepumpe; Zweiter Hauptsatz der Thermodynamik; Entropie; reversible und irreversible Prozesse; Joule-Thomson-Effekt; Chemisches Potential und Gibbssche Fundamentalgleichung; Phasengleichgewichte und Gibbssche Phasenregel; einfache Phasendiagramme, Clausius-Clapeyron-Gleichung; Mischphasen und partielle molare Größen; Thermodynamik einfacher Mischungen; Raoultsches Gesetz; Henry-Gesetz; kolligative Eigenschaften: Dampfdruckerniedrigung, Siedepunkterhöhung, Gefrierpunkterniedrigung, osmotischer Druck; Aktivität und Aktivitätskoeffizienten: chemisches Gleichgewicht; Gleichgewichtskonstanten und ihre Druck- und Temperaturabhängigkeiten.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen die Grundlagen der Thermodynamik. Sie haben ein Grundverständnis für thermodynamische Problemstellungen und die Übertragung der theoretischen Kenntnisse auf praktische Probleme. Die Studierenden sind in der Lage, die Konzepte und mathematischen Gesetze der Thermodynamik in Rechenaufgaben zu erkennen. Sie können die Konzepte und Gesetze schriftlich und anhand von Schaubildern erläutern und Verständnis- und Wissensfragen dazu beantworten.

Zu erbringende Prüfungsleistung

Klausur.

Zu erbringende Studienleistung

Keine.

Literatur

P. W. Atkins, J. de Paula: Physikalische Chemie, Wiley-VCH; G. Wedler, H.-J. Freund: Lehr- und Arbeitsbuch Physikalische Chemie, Wiley-VCH; T. Engel, P. Reid: Physikalische Chemie, Pearson Studium

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Physikalische Chemie I	08LE05MO-2HF-PCI
Veranstaltung	
Physikalische Chemie I	
Veranstaltungsart	Nummer
Übung	08LE05Ü-ID030009_n
Veranstalter	
Institut für Physikalische Chemie	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	30 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Inhalte der Vorlesung Physikalische Chemie I werden vertieft.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden sind in der Lage, die Gesetze der Thermodynamik in Rechenaufgaben zu erkennen. Sie können einfache Rechenaufgaben der Thermodynamik lösen.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Erwerb von 50 % der Gesamtpunktzahl der Übungen.

Literatur

P. W. Atkins, J. de Paula: Physikalische Chemie, Wiley-VCH; G. Wedler, H. -J. Freund: Lehr- und Arbeitsbuch Physikalische Chemie, Wiley-VCH; T. Engel, P. Reid: Physikalische Chemie, Pearson Studium

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Physikalische Chemie II	08LE05MO-2HF-PCII
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Physikalische Chemie II	Vorlesung	Pflicht	2,0	3,0	60 h
Physikalische Chemie II	Übung	Pflicht	4,0	2,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen die Grundlagen der Kinetik und der Elektrochemie. Sie sind in der Lage, die Konzepte und Gesetze der Kinetik und der Elektrochemie in Textaufgaben zu erkennen. Sie können diese schriftlich anhand von Schaubildern erläutern sowie Verständnis- und Wissensfragen dazu beantworten.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur Physikalische Chemie II.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

Name des Moduls Nummer des Moduls		
Physikalische Chemie II	08LE05MO-2HF-PCII	
Veranstaltung		
Physikalische Chemie II		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030010_n	

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	45 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht

Inhalte

Kinetik: Elementarreaktion versus Bruttoreaktionsgleichung; Molekularität versus Reaktionsordnung; Reaktionsgeschwindigkeit; differentielle und integrierte Geschwindigkeitsgesetze nullter, erster, zweiter und höherer Ordnung und Pseudo-Ordnung; graphische Auswertungen/Auftragungen; Halbwertszeit und Geschwindigkeitskonstante für Reaktionen verschiedener Ordnung; Temperaturabhängigkeit chemischer Reaktionen (Arrhenius); Lindemann-Mechanismus und das Quasistationaritätsprinzip; Parallel- und Folgereaktionen; Kettenreaktionen; Modellierung kinetischer Mechanismen; Theoretische Kinetik: Ansatz und Ergebnis der Stoßtheorie (Stoßzahlen, Stoßquerschnitte und mittlere freie Weglänge); Katalyse: homogen versus heterogen; Langmuir-Adsorptionsisotherme; Enzymkatalyse (Michaelis-Menten-Kinetik); Transportphänomene und allgemeine Transportgleichungen (Viskosität, Wärmeleitung, Diffusion, Ficksche Gesetze, Stokes-Einstein-Gleichung, mittlere Verschiebungsquadrate).

Elektrochemie: Ionen in wässriger Lösung; Faradaysche Gesetze; Aufbau elektrochemischer Zellen; Leitfähigkeit; starke und schwache Elektrolyte; Debye-Hückel-Theorie; elektrochemische Gleichgewichte; Nernstsche Gleichung; Batterien und Akkumulatoren.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden sind in der Lage, die Grundzüge der Kinetik und der Elektrochemie zu erläutern und mit den wesentlichen Größen umzugehen. Sie können die Konzepte und Gesetze der Kinetik und der Elektrochemie in Textaufgaben erkennen und schriftlich anhand von Schaubildern erläutern sowie Verständnisund Wissensfragen dazu beantworten.

Zu erbringende Prüfungsleistung

Klausur.

Voraussetzung für die Teilnahme an der Klausur ist der Erwerb von 50 % der erreichbaren Punktzahl in der Übung zur Vorlesung.

Prüfungsrelevant ist der Stoff aus Vorlesung und Übung Physikalische Chemie II.

Zu erbringende Studienleistung

Keine.

Literatur

P. W. Atkins, J. de Paula: Physikalische Chemie, Wiley-VCH; G. Wedler, H.-J. Freund: Lehr- und Arbeitsbuch Physikalische Chemie, Wiley-VCH; T. Engel, P. Reid: Physikalische Chemie, Pearson Studium

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Physikalische Chemie II	08LE05MO-2HF-PCII
Veranstaltung	
Physikalische Chemie II	
Veranstaltungsart	Nummer
Übung	08LE05Ü-ID030011_n
Veranstalter	
Institut für Physikalische Chemie	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	30 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht

Inhalte

Die Studierenden können die Konzepte und Gesetze der Kinetik und der Elektrochemie in Rechenaufgaben erkennen und schriftlich anhand von Schaubildern erläutern sowie Verständnis- und Wissensfragen dazu beantworten.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Erwerb von 50 % der Gesamtpunktzahl der Übungen.

Literatur

P. W. Atkins, J. de Paula: Physikalische Chemie, Wiley-VCH; G. Wedler, H.-J. Freund: Lehr- und Arbeitsbuch Physikalische Chemie, Wiley-VCH; T. Engel, P. Reid: Physikalische Chemie, Pearson Studium

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls Nummer des Modul	
Physikalische Chemie III	08LE05MO-2HF-PCIII
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	5
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Physikalische Chemie III (PO 2022)	Vorlesung	Pflicht	1,0	2,0	60 h
Physikalische Chemie III (PO 2022)	Übung	Pflicht	2,0	1,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen die Grundlagen der Quantenmechanik. Sie haben ein Grundverständnis fur quantenmechanische Problemstellungen und die Übertragung der theoretischen Kenntnisse auf praktische Probleme.

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls Nummer des Moduls	
Physikalische Chemie III	08LE05MO-2HF-PCIII
Veranstaltung	
Physikalische Chemie III (PO 2022)	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID030019_n

ECTS-Punkte	1,0
Arbeitsaufwand	60 h
Präsenzstudium	45 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Atomistische Struktur der Materie; Teilcheneigenschaften elektromagnetischer Strahlung; Absorptionsund Emissionsspektren; Lambert-Beer-Gesetz; elektromagnetisches Spektrum; Wellenlänge von Teilchen;
Schrödinger-Gleichung; Anwendung der Schrödinger-Gleichung auf einfache Systeme: Teilchen im Potentialkasten, Wasserstoffatom, Harmonischer Oszillator, Starrer Rotator; quantenmechanischer Drehimpuls;
Auswahlregeln und das Spektrum des Wasserstoffatoms; Heisenbergsche Unschärferelation; Tunneleffekt;
Aufbau von Mehrelektronenatomen; Aufbau des Periodensystems (PSE); Moleküle und chemische Bindung; Born-Oppenheimer-Näherung; LCAO-Methode; magnetisches Dipolmoment und quantenmechanische Beschreibung von Atomen

Für den polyvalenten Bachelor Chemie gilt:

Atomistische Struktur der Materie; Teilcheneigenschaften elektromagnetischer Strahlung; Absorptionsund Emissionsspektren; Lambert-Beer-Gesetz; elektromagnetisches Spektrum; Wellenlänge von Teilchen; Schrödinger-Gleichung; Anwendung der Schrödinger-Gleichung auf einfache Systeme: Teilchen im Potentialkasten, Wasserstoffatom

Zu erbringende Prüfungsleistung

Klausur.

Voraussetzung für die Teilnahme an der Klausur ist der Erwerb von 50 % der erreichbaren Punkte in der Übung.

Für den polyvalenten Bachelor gilt:

Voraussetzung für die Teilnahme an der Klausur ist der Erwerb von 50 % der erreichbaren Punkte in den für den Inhalt der Vorlesung für Studierende des polyvalenten Bachelor Chemie relevanten Übungsstunden.

Zu erbringende Studienleistung

Keine.

Literatur

P. W. Atkins, J. de Paula: Physikalische Chemie, Wiley-VCH; G. Wedler, H.-J. Freund: Lehr- und Arbeitsbuch Physikalische Chemie, Wiley-VCH; T. Engel, P. Reid: Physikalische Chemie, Pearson Studium

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Physikalische Chemie III	08LE05MO-2HF-PCIII
Veranstaltung	
Physikalische Chemie III (PO 2022)	
Veranstaltungsart	Nummer
Übung	08LE05Ü-ID030020_n
Veranstalter	
Institut für Physikalische Chemie	

ECTS-Punkte	2,0
Arbeitsaufwand	120 h
Präsenzstudium	30 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Inhalte der Vorlesung Physikalische Chemie III werden vertieft.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden sind in der Lage, die Gesetze der Quantenmechanik in Rechenaufgaben zu erkennen. Sie können einfache Probleme der Quantenmechanik mathematisch lösen.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Erwerb von 50 % der Gesamtpunktzahl der Übungen.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Grundpraktikum Physikalische Chemie	08LE05MO-2HF-PCG
Verantwortliche/r	
Dr. Bizan Nicolas Anosarwan Balzer	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	5
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten und
- Physikalische Chemie I oder II

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Grundpraktikum Physikalische Chemie	Praktikum	Pflicht	3,0	3,0	210 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können mit Messmethoden der Physikalischen Chemie zu den Gasgesetzen, zur Thermodynamik, chemischen Reaktionskinetik, Elektrochemie und Spektroskopie eigenständig experimentell arbeiten, die Ergebnisse auswerten (z. B. systematische und statistische experimentelle Fehler abschätzen bzw. berechnen), diskutieren und in Protokollen schriftlich dokumentieren. Durch Gruppenarbeit im Praktikum und durch gemeinsames Erarbeiten wissenschaftlicher Inhalte vertiefen die Studierenden ihre Teamfähigkeit.

Zusammensetzung der Modulnote

Die Note ergibt sich zu je einem Drittel aus den Noten für Versuchsprotokolle, mündliche Kolloquien und einem Seminarvortrag.

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Grundpraktikum Physikalische Chemie	08LE05MO-2HF-PCG
Veranstaltung	
Grundpraktikum Physikalische Chemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID030321
Veranstalter	
Institut für Physikalische Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	210 h
Präsenzstudium	90 h
Selbststudium	120 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Enzymkinetik; Gefrierpunktserniedrigung; Wärmepumpe; Verbrennungswärme; Fluoreszenz; Molwärme von Festkörpern; Solvolyse; Esterverseifung; Diffusion; pH-Messung; Leitfähigkeit von Elektrolyten; galvanische Ketten; Oberflächenspannung; Fehlerrechnung

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können mit Messmethoden der Physikalischen Chemie zu den Gasgesetzen, zur Thermodynamik, chemischen Reaktionskinetik, Elektrochemie und Spektroskopie eigenständig experimentell arbeiten, die Ergebnisse auswerten (z. B. systematische und statistische experimentelle Fehler abschätzen bzw. berechnen), diskutieren und in Protokollen dokumentieren. Durch Gruppenarbeit im Praktikum und durch gemeinsames Erarbeiten wissenschaftlicher Inhalte vertiefen die Studierenden ihre Teamfähigkeit.

Zu erbringende Prüfungsleistung

Versuchsprotokolle, Kolloquien (mündlich), Seminarvortrag

Ein-Hauptfach-Bachelor Chemie und Regio Chimica:

12 Versuche mit einer durchschnittlichen Dauer von vier Stunden

Polyvalenter Bachelor Chemie:

6 Versuche mit einer durchschnittlichen Dauer von vier Stunden

Zu erbringende Studienleistung

Regelmäßige Anwesenheit, Teilnahme an Seminarvorträgen der anderen Studierenden, Labortestate (Vorgespräch zum jeweiligen Versuch aus Sicherheitsgründen und zur Feststellung, ob die Versuchsdurchführung hinreichend vorbereitet ist).

Teilnahmevoraussetzung laut Prüfungsordnung

Für den Ein-Fach-Bachelor und den polyvalenten Bachelor Chemie gilt:

Erfolgreiche Absolvierung der Module:

Einführungskurs Chemisches Arbeiten und

Physikalische Chemie I oderII

Für Regio Chimica gilt:

Erfolgreich absolviertes erstes Studienjahr in Mulhouse.

Bemerkung / Empfehlung

Für den Ein-Hauptfach-Bachelor Chemie und Regio Chimica gilt:

Die Versuche finden montags und mittwochs oder dienstags und donnerstags statt; die Wahl der Tage erfolgt über ILIAS.

Für Regio Chimica gilt:

Die Versuche finden mittwochs und freitags statt, evtl. noch zusätzlich an einem anderen Wochentag; die Wahl der Tage erfolgt über ILIAS.

Für den polyvalenten Bachelor Chemie gilt:

Die Versuche finden montags, dienstags, mittwochs oder donnerstags statt; die Wahl der Tage erfolgt über ILIAS.

Für alle Studierenden gilt, dass eine aktive Teilnahme an den Seminarvorträgen der anderen Studierenden empfohlen wird.

Name des Moduls	Nummer des Moduls	
Rechenmethoden der Chemie und Pharmazie 08LE05MO-2HF-RM		
Verantwortliche/r		
Prof. Dr. Stefan Günther Prof. Dr. Thorsten Koslowski		
Fachbereich / Fakultät		
Fakultät für Chemie und Pharmazie		

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Rechenmethoden der Chemie und Pharma- zie	Vorlesung	Pflicht	2,0	2,0	60 h
Rechenmethoden der Chemie und Pharma- zie	Übung	Pflicht	2,0	1,0	60 h

Lern- und Qualifikationsziele der Lehrveranstaltung		
Die Studierenden beherrschen die rechentechnischen Grundlagen ihres Faches.		
Zusammensetzung der Modulnote		
Unbenotete Studienleistung.		
Verwendbarkeit des Moduls		
Ein-Hauptfach-Bachelor B.Sc. Chemie Polyvalenter B.Sc. Chemie		

Name des Moduls	Nummer des Moduls		
Rechenmethoden der Chemie und Pharmazie 08LE05MO-2HF-RM			
Veranstaltung			
Rechenmethoden der Chemie und Pharmazie			
Veranstaltungsart Nummer			
Vorlesung	08LE05V-ID030012		

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	30 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Mathematische Notation; Folgern; Beweistechniken; Zehnerpotenzen; Rechnen mit Logarithmen; Funktionen einer Veränderlichen; Differentiation und Integration; Funktionen mehrerer Veränderlicher; Vektoren und Gleichungssysteme; einfache Differentialgleichungen; Statistik und Ausgleichsrechnung.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Klausur.

Voraussetzung für die Teilnahme an der Klausur ist der Erwerb von 50 % der erreichbaren Punkte in der Übung.

Literatur

A. Jüngel, H. G. Zachmann: Mathematik für Chemiker, Wiley-VCH; L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1: Ein Lehr- und Arbeitsbuch für das Grundstudium, Springer-Verlag

Teilnahmevoraussetzung laut Prüfungsordnung

Voraussetzung für die Teilnahme an der Klausur ist der Erwerb von 50 % der erreichbaren Punkte in der Übung.

Name des Moduls	Nummer des Moduls
Rechenmethoden der Chemie und Pharmazie	08LE05MO-2HF-RM
Veranstaltung	
Rechenmethoden der Chemie und Pharmazie	
Veranstaltungsart	Nummer
Übung	08LE05Ü-ID030013
Veranstalter	
Institut für Physikalische Chemie Institut für Pharmazeutische Wissenschaften	

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	15 h
Selbststudium	45 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Inhalte der Vorlesung Rechenmethoden der Chemie und Pharmazie werden durch selbstständiges Üben vertieft.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Erwerb von 50 % der Punkte der Übungen.

Literatur

A. Jüngel, H. G. Zachmann: Mathematik für Chemiker, Wiley-VCH; L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1: Ein Lehr- und Arbeitsbuch für das Grundstudium, Springer-Verlag

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Rechenmethoden der Physikalischen Chemie I	08LE05MO-2HF-RMI	
Verantwortliche/r		
Prof. Dr. Thorsten Koslowski		
Fachbereich / Fakultät		
Fakultät für Chemie und Pharmazie		

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Rechenmethoden der Physikalischen Chemie I	Vorlesung	Pflicht	2,0	2,0	60 h
Übungen Rechenmethoden der Physikalischen Chemie I	Übung	Pflicht	2,0	1,0	60 h

Lern- und Qualifikationsziele der Lehrveranstaltung		
Die Studierenden beherrschen den Vorlesungs- und Übungsstoff aktiv.		
Zusammensetzung der Modulnote		
Unbenotete Studienleistung.		
Verwendbarkeit des Moduls		
Ein-Hauptfach-Bachelor B.Sc. Chemie Polyvalenter B.Sc. Chemie		

 \uparrow

Name des Moduls	Nummer des Moduls		
Rechenmethoden der Physikalischen Chemie I 08LE05MO-2HF-RMI			
Veranstaltung			
Rechenmethoden der Physikalischen Chemie I			
Veranstaltungsart Nummer			
Vorlesung	08LE05V-ID030013		

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	30 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Komplexe Zahlen und Vektorräume; Fouriertransformation; Stetigkeit; Taylorreihe; gewöhnliche und partielle Differentialgleichungen; Kombinatorik; Wahrscheinlichkeitsrechnung einschließlich der Boltzmann-Verteilung

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Klausur.

Literatur

Jüngel, H. G. Zachmann: Mathematik für Chemiker, Wiley-VCH; L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 2: Ein Lehr- und Arbeitsbuch für das Grundstudium, Springer-Verlag

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls		
Rechenmethoden der Physikalischen Chemie I 08LE05MO-2HF-RMI			
Veranstaltung			
Übungen Rechenmethoden der Physikalischen Chemie I			
Veranstaltungsart Nummer			
Übung	08LE05Ü-ID030016		

ECTS-Punkte	2,0
Arbeitsaufwand	60 h
Präsenzstudium	15 h
Selbststudium	45 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Inhalte der Vorlesung Rechenmethoden der Physikalischen Chemie I werden durch selbstständiges Üben vertieft.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

50% der Punkte der Übungen.

Literatur

Jüngel, H. G. Zachmann: Mathematik für Chemiker, Wiley-VCH; L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 2: Ein Lehr- und Arbeitsbuch für das Grundstudium, Springer-Verlag

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	08LE05MO-2HF-PHYS
Verantwortliche/r	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	3
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	Vorlesung	Pflicht	4,0	4,0	120 h
Übungen zur Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	Übung	Pflicht	1,0	1,0	30 h

Lern- und Qualifikationsziele der Lehrveranstaltung

- Erlernen und Verständnis physikalischer Denkweise (mathematische Beschreibung und Modellierung natürlicher Vorgänge) (2)
- Erlernen der Grundlagen der klassischen Physik (1)

Klassifikation der Qualifikations- und Lernziele nach BLOOM (1973):

1= Kenntnisse: Wissen reproduzieren können; 2= Verständnis: Wissen erläutern können; 3= Anwendung: Wissen anwenden können; 4= Analyse: Zusammenhänge analysieren können; 5= Synthese: eigene Problemlösestrategien angeben können; 6= Beurteilung: eigene Problemlösestrategien beurteilen können

Zusammensetzung der Modulnote

Unbenotete Studienleistung.

Literatur

- Tipler: Physik fur Wissenschaftler und Ingenieure
- Pitka u.a.: Physik Grundkurs
- Stroppe: Physik

Genauere Hinweise zu den zu bearbeiteten Kapiteln und Themengebieten werden zu Beginn der Veranstaltung bekannt gegeben.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls		
Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	08LE05MO-2HF-PHYS		
Veranstaltung			
Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften			
Veranstaltungsart	Nummer		
Vorlesung	07LE33V-EXP_NAT		

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	60 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

Die Studierenden können die wichtigsten Phänomene in den Gebieten der Mechanik, Optik, Elektrizitätslehre, Thermodynamik und Radioaktivität sprachlich und mathematisch beschreiben und einfache Experimente dazu angeben. Sie wenden die Kenntnisse in einfachen Experimenten an und können experimentelle Daten mit der dazugehörigen Fehlerrechnung auswerten.

Die Vorlesung vermittelt die Grundlagen der Physik für Studierende der Naturwissenschaften. Im Einzelnen werden folgende Themen behandelt:

- Grundbegriffe der Physik
- Mechanik starrer und deformierbarer Körper
- mechanische, Schall- und Lichtwellen
- Wärme- und Elektrizitätslehre
- Optik
- Ionisierende Strahlung

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden sind in der Lage abstrakte Beschreibungen physikalischer Experimente zu verstehen.
- Die Studierenden können rechnerische oder phänomenologische Lösungen von physikalischen Problemstellungen eigenständig erarbeiten und sind damit auf die Durchführung eigener praktischer Experimente im physikalischen Praktikum vorbereitet.

Zu erbringende Prüfungsleistung

B.Sc. Biologie, BSc. Geowissenschaften, B.Sc. Umweltnaturwissenschaften, B.Sc. Geographie: schriftliche Modul(teil)prüfung; die Inhalte der Vorlesung gehen in die Modulklausur am Ende des Semesters ein. B.Sc. Chemie: Keine Prüfungsleistung in der Klausur.

Zu erbringende Studienleistung

keine

Literatur

Zum selbständigen Vor- und Nacharbeiten der Inhalte wird das Vorlesungsskript und folgende Fachliteratur empfohlen:

- Tipler: Physik für Wissenschaftler und Ingenieure
- Giancoli: Physik
- Meschede & Gehrtsen: Gehrtsen Physik
- Pitka u.a.: Physik Der Grundkurs
- Stroppe: PHYSIK für Studierende der Natur- und Ingenieurwissenschaften

Teilnahmevoraussetzung laut Prüfungsordnung

keine

Name des Moduls	Nummer des Moduls		
Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften	08LE05MO-2HF-PHYS		
Veranstaltung			
Übungen zur Einführung in die Physik mit Experimenten für Studierende der Natur- und Umweltwissenschaften			
Veranstaltungsart	Nummer		
Übung	07LE33Ü-EXP_NAT		

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	30 Stunden
Selbststudium	30 Stunden
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Inhalte

In den Übungen erlernen die Studierenden, die in der Vorlesung vermittelten Inhalte auf physikalische Fragestellungen anzuwenden. Dies geschieht im Rahmen von:

- Übungsaufgaben, welche in Heimarbeit gelöst und online abgeben werden. Die Lösungen dieser (etwas umfangreicheren) Fragestellungen werden in den auf die Abgabe folgenden Übungsgruppen diskutiert. Die Lösungen werden hierbei von den Studierenden präsentiert. Die Auswahl des Vortragenden erfolgt zufällig durch den Tutor. Die Tutoren werden die Präsentationen moderieren und bei Fragen Hilfestellungen geben.
- Exemplarischen Klausuraufgaben, welche die Tutoren während der Übungsgruppen präsentieren. Diese (zumeist kürzeren) Aufgaben erden während des Tutoriums bearbeitet und die Lösungen anschließend in der Gruppe besprochen.

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Erwerb von 50% der Gesamtpunktzahl der Übungen, erfolgreiche Präsentation von mindestens einer Aufgabe (oder Teilaufgabe nach Ermessen des Tutors) aus der Heimarbeit oder eine in der Übung bearbeiteten Klausuraufgabe; regelmäßige Teilnahme an der Übung gemäß § 13, Abs. 2 der Rahmenprüfungsordnung Bachelor of Science.

Teilnahmevoraussetzung laut Prüfungsordnung

keine

Name des Moduls	Nummer des Moduls
Biochemie I	08LE05MO-2HF-BCI
Verantwortliche/r	
Prof. Dr. Thorsten Friedrich	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	4
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Biochemie I	Vorlesung	Pflicht	4,0	3,0	120 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können grundlegende Mechanismen und Zusammenhänge biochemischer Prozesse in den verschiedenen Komplexitätsebenen lebender Systeme beschreiben.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur Biochemie I.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

B.Sc. Regio Chimica

Name des Moduls	Nummer des Moduls
Biochemie I	08LE05MO-2HF-BCI
Veranstaltung	
Biochemie I	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID040004
Veranstalter	
Institut für Biochemie	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	45 h
Selbststudium	75 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	4
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht

Inhalte

Definition von Leben; zellulärer Aufbau der Organismen, Prokaryoten/Eukaryoten; Einteilung in Grampositive/Gram-negative Bakterien, Aufbau: periplasmatische Membran, Kapsel, Zellwand, Plasmamembran, Flagellen, Pili, Chromosom, Nukleoid, Chromosomen, Ribosomen; Strukturen der Eukaryoten: Plasmamembran und Cytosol, Zellkern mit Chromosomen, Chromatin, Nucleolus und Kernporen, Raues/glattes endoplasmatisches Retikulum, Golgi-Apparat, Mitochondrien, Chloroplasten, Lysosomen, Peroxisomen, Vakuole und Cytoskelett: Endosymbiose: Einteilung in drei Domänen: Archäen, Eubakterien, Eukarvoten: Phylogenetischer Stammbaum; Einführung in die biochemischen Stoffklassen: Lipide, Membranen, Glycerophospholipide, Sphingolipide, Cholesterin, Detergentien, Permeabilität und Fluidität der Membran; Zucker, Strukturen und Stereochemie, Vielfalt der Polymere (Cellulose, Chitin, Stärke, Amylose, Amylopektin, Glycogen); Aufbau und Struktur des Peptidoglycans, Wirkung von Antibiotika; Nucleotide, Aufbau und Struktur von DNA, Aufbau und Struktur von RNA; Zentrales Dogma der Biochemie und Molekularbiologie; DNA-Replikation: semikonservativer Mechanismus, Replikationsursprung, Replikationsgabeln, DNA-Polymerase, Korrekturlesefunktion, Mechanismus der Replikation, Okazaki-Fragmente; DNA-Transkription: RNA-Polymerase, (Nicht-) Matrizenstrang, (nicht-)kodierender Strang, Transkript, Operon-Struktur: Promotoren, Operatoren; Translation: Proteinbiosynthese, Genetischer Code, Wobble-Hypothese, Beladung der tRNA: Aminoacyl-tRNA-Synthetasen, zweiter genetischer Code, Ribosom, Translation (Initiation, Elongation, Translokation, Termination), Polysomen, Post-translationale Modifikationen.

Zu erbringende Prüfungsleistung

B.Sc. Chemie: Klausur.

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Zu erbringende Studienleistung

Für Methoden und Konzepte im M.Sc. Chemie (PO 2011): 1 ECTS für individueller Leistungsnachweis (schriftliche Beantwortung von Fragen).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 4. Aufl, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer, 7. Aufl. 2013

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Grundpraktikum Biochemie	08LE05MO-2HF-BCG
Verantwortliche/r	
Prof. Dr. Thorsten Friedrich	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	4
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Biochemie I

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Grundpraktikum Biochemie	Praktikum	Wahlpflicht	5,0	5,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können grundlegende Mechanismen und Zusammenhänge biochemischer Prozesse in den verschiedenen Komplexitätsebenen lebender Systeme beschreiben.

Zusammensetzung der Modulnote

Die Note ergibt sich als Mittel aus zwei Teilnoten wie folgt:

- 1. Teilnote:
- 25% Vorbereitung (Arbeitsplatzgespräche)
- 25 % Praktische Arbeit
- 50% Protokolle (Mittel aus zwei Protokoll-Noten)
- 2. Teilnote
- Mündliches Abschluss-Kolloquium

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Grundpraktikum Biochemie	08LE05MO-2HF-BCG
Veranstaltung	
Grundpraktikum Biochemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID040002
Veranstalter	
Institut für Biochemie	

ECTS-Punkte	5,0
Arbeitsaufwand	180 h
Präsenzstudium	75 h
Selbststudium	105 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Inhalte

Grundlegende molekularbiologische Techniken: PCR, Restriktionsanalyse, Klonierung; Transformation von Organismen; Zellzucht; rekombinante Expression, Aufreinigung von Proteinen Proteinanalytik; Kristallisation von Proteinen

Zu erbringende Prüfungsleistung

Für B.Sc. Chemie, B.Sc. Regio Chimica und polyvalenten B.Sc. Chemie gilt:

schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung

Zu erbringende Studienleistung

Für B.Sc. Chemie und B.Sc. Regio Chimica gilt:

Regelmäßige Teilnahme und Seminarvortrag (10 min) über ausgewählte Kapitel des Praktikums.

Für polyvalenten B.Sc. Chemie gilt:

Regelmäßige Teilnahme.

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 4. Aufl, 2009

Berg, Tymoczko, Stryer: Stryer Biochemie, Springer, 7. Aufl. 2013

Teilnahmevoraussetzung laut Prüfungsordnung

Für B.Sc. Chemie und polyvalenten B.Sc.Chemie gilt:

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Biochemie I

HF (Prüfungsordnungsversion 2022)		
<u></u>		

Polyvalenter Zwei-Hauptfächer-Bachelorstudiengang (2. Hauptfach bei Musik-/Kunsthochschule) im Fach Chemie -

Name des Moduls	Nummer des Moduls
Makromolekulare Chemie I	08LE05MO-2HF-MCI
Verantwortliche/r	
Prof. Dr. Laura Hartmann Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	4
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS		Arbeits- aufwand
Makromolekulare Chemie I	Vorlesung	Wahlpflicht	5,0	3,0	135 h
Makromolekulare Chemie I	Übung	Wahlpflicht	1,0	1,0	45 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden kennen Grundlagen und aktuelle Forschungsgebiete der Makromolekularen Chemie.

Zusammensetzung der Modulnote

Die Note des Moduls ist die Note für die Klausur Makromolekulare Chemie I.

Verwendbarkeit des Moduls

Ein-Hauptfach-Bachelor B.Sc. Chemie

Polyvalenter B.Sc. Chemie

B.Sc. Regio Chimica

Name des Moduls	Nummer des Moduls
Makromolekulare Chemie I	08LE05MO-2HF-MCI
Veranstaltung	
Makromolekulare Chemie I	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050001

ECTS-Punkte	5,0
Arbeitsaufwand	135 h
Präsenzstudium	45 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Inhalte

Polymersynthesen: Molekulargewicht und Molekulargewichtsverteilung von Polymeren, Stufenreaktionen, Kettenreaktionen (radikalisch, anionisch, kationisch), Lebende Polymerisationen, Thermodynamik – Ceiling-Temperatur, Biosynthesen, Polyinsertion, Stereospezifische Polymerisation, Polymeranaloge Umsetzung, Copolymerisation, Polymere in Lösung und Polymeranalytik: Konformation, Modelle, Mischungsthermodynamik, Phasendiagramme, Polymeranalytik (kolligative Eigenschaften; Viskosimetrie; GPC; Ultrazentrifuge; Lichtstreuung); Polymere im festen Zustand: Polymeranalytik- und verarbeitung, Werkstoffeigenschaften, Schmelz- und Glasübergangstemperatur, Kristallinität, Polymeranalytik, Kautschukelastizität, Viskoelastizität, Rheologie und Kunststoffverarbeitung.

Zu erbringende Prüfungsleistung

B.Sc. Chemie: Klausur.

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Zu erbringende Studienleistung

Keine.

Literatur

B. Tieke, Makromolekulare Chemie

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls Nummer des Moduls		
Makromolekulare Chemie I	08LE05MO-2HF-MCI	
Veranstaltung		
Makromolekulare Chemie I		
Veranstaltungsart	Nummer	
Übung	08LE05Ü-ID050003	

ECTS-Punkte	1,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Inhalte	
---------	--

Begleitende und vertiefende Übungen zur Vorlesung Makromolekulare Chemie I.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Keine.

Literatur

B. Tieke, Makromolekulare Chemie

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Grundpraktikum Makromolekulare Chemie	08LE05MO-2HF-MCG
Verantwortliche/r	
Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	4
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Makromolekulare Chemie I

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Grundpraktikum Makromolekulare Chemie	Praktikum	Wahlpflicht	3,0	5,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden kennen Grundlagen und aktuelle Forschung auf dem Gebiet der Makromolekularen Chemie. Sie können die Synthese und physikalische Chemie von Polymeren charakterisieren und führen typische Polymerisationssynthesemethoden im Rahmen von Versuchen durch.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Verwendbarkeit des Moduls

Polyvalenter B.Sc. Chemie

Name des Moduls	Nummer des Moduls
Grundpraktikum Makromolekulare Chemie	08LE05MO-2HF-MCG
Veranstaltung	
Grundpraktikum Makromolekulare Chemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID050005
Veranstalter	
Institut für Makromolekulare Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	180 h
Präsenzstudium	150 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Inhalte

Einführendes Seminar mit Sicherheitsunterweisung sowie *Praktikumsversuche zu wesentlichen Themen der Makromolekularen Chemie. Die Versuche werden zu Beginn des Praktikums zugewiesen. Mögliche Themenbereiche sind: Emulsionspolymerisation, Polykondensation, Anionische Polymerisation, Radikalische Polymerisation, insertion Polymerisation, Copolymerisation, Polymeranaloge Umsetzung, Thermodynamik von Polymerlösungen, Viskosität, GPC, Röntgenweitwinkelstreuung, DSC, NMR-Spektroskopie, Verarbeitung von Polymeren, Rheologie, Mechanische Charakterisierung von Polymeren, Statische und Dynamische Lichtstreuung, AFM.

* für Studierende in dem Studiengang B.Sc. Chemie 12 Versuche, für Regio Chimica B.Sc. 8 Versuche, für B.Sc. polyvalent 4 Versuche

Zu erbringende Prüfungsleistung

Für B.Sc. Chemie und Regio Chimica gilt:

Mündliche Prüfung

Für den polyvalenten B.Sc. Chemie gilt:

Schriftliche Ausarbeitung, mündliche Präsentation, praktische Leistung

Zu erbringende Studienleistung

Für B.Sc. Chemie und Regio Chimica gilt:

Regelmäßige Teilnahme, schriftliche Ausarbeitung, mündliche Präsentation (Kolloquien), praktische Leistung

Für den polyvalenten B.Sc. Chemie gilt:

Regelmäßige Teilnahme

Literatur

Oskar Nuyken, Sebastian Koltzenburg, Michael Maskos, Polymer Chemistry

Teilnahmevoraussetzung laut Prüfungsordnung

Für B.Sc. und polyvalenten Bachelor Chemie gilt:

Erfolgreiche Absolvierung der Module:

- Einführungskurs Chemisches Arbeiten
- Makromolekulare Chemie I

Für B.Sc. Regio Chimica gilt:

Erfolgreiche Absolvierung des ersten Studienjahrs in Mulhouse und des Moduls Makromolekulare Chemie I.

Bemerkung / Empfehlung

Für den B.Sc. Chemie gilt:

Das Praktikum umfasst 12 Versuche.

Für den B.Sc. Regio Chimica gilt:

Das Praktikum umfasst 8 Versuche.

Für den polyvalenten B.Sc. Chemie gilt:

Das Praktikum umfasst 4 Versuche.

Die Inhalte der Versuche werden jeweils mit der Praktikumsleitung zu Beginn des Praktikums abgesprochen.

Name des Moduls	Nummer des Moduls
Bachelorarbeit	08LE05MO-8000-2H- F-032-2022
Verantwortliche/r	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	10,0
Arbeitsaufwand	300 h
Mögliche Fachsemester	
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

- 1. Erwerb von mindestens 60 ECTS-Punkten im Fach Chemie
- 2. Erfolgreiche Absolvierung aller folgenden Module:
- Grundpraktikum Anorganische Chemie
- Grundpraktikum Organische Chemie
- Grundpraktikum Physikalische Chemie
- Grundpraktikum Biochemie bzw. Makromolekulare Chemie
- 3. Erfolgreiche Absolvierung aller Module aus demjenigen Fachgebiet, in dem die Bachelorarbeit erstellt werden soll.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand

Inhalte

Das Thema der Bachelorarbeit ermöglicht im kleinen Rahmen eigenständige angeleitete Forschung. Die Bearbeitung der Bachelorarbeit umfasst:

- Erstellung eines Arbeitsplans
- Recherche notwendiger Literatur
- Planung, sowie Durchführung und Auswertung der Untersuchungen
- Präsentation der Ergebnisse in der Bachelorarbeit

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können eine wissenschaftliche Fragestellung aus einem Fach der Chemie unter Anleitung und in einem fest vorgegebenen Zeitrahmen mit wissenschaftlichen Methoden bearbeiten. Hierfür können sie Fachliteratur recherchieren, verstehen und zu Ihrem Bachelorprojekt in Bezug setzen. Sie können unter

Anleitung moderne Methoden einsetzen und Versuche/Untersuchungen durchführen und dokumentieren. Die Ergebnisse können Sie schriftlich präsentieren.

Zu erbringende Prüfungsleistung

Bachelorarbeit

Zusammensetzung der Modulnote

Die Note für die Bachelorarbeit ist die Note für das Bachelormodul.

Verwendbarkeit des Moduls

Polyvalenter Bachelor of Science Chemie

Epilog

Kontaktdaten

Studiengangkoordination: studiengangkoordination@chemie.uni-freiburg.de

Studiendekan: studiendekan@chemie.uni-freiburg.de

ILIAS Kurs der Studiengangkoordination Informationen zum Studium

Hier finden Sie alle studienrelevanten Informationen wie z.B. Termine, Fristen, Ansprechpersonen, Formulare, usw.

Kursbeitritt bequem per QR Code:

