

Fakultät für Chemie und Pharmazie

Modulhandbuch

Master of Science (M.Sc.) im Fach Chemie - Hauptfach (Prüfungsordnungsversion 2023)

Inhaltsverzeichnis

Prolog	3
Pflichtbereich	
Koordinations- und Strukturchemie	10
Festkörper- und Molekülchemie	14
Organische Chemie	19
Physikalische Chemie	21
Masterpraktikum Anorganische Chemie	23
Masterpraktikum Organische Chemie	26
Masterpraktikum Physikalische Chemie	28
Wahlfach 1 oder 2	31
Koordinations- und Strukturchemie	32
Festkörper- und Molekülchemie	36
Moderne Analytische Methoden in der Anorganischen Chemie	41
Koordinationschemie und Reaktionsmechanismen	
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	52
Spektroskopische Methoden in den Biowissenschaften	60
Spektroskopische Methoden in den Materialwissenschaften	65
Detection and Analysis of Single Molecules and Molecular Machines	70
Membrane Biochemistry	75
Advanced Biochemistry	82
Proteins	85
Bioinorganic Chemistry	90
Advanced Macromolecular Chemistry	
Polymer Materials – Synthesis and Applications	99
Sequence-controlled polymers in Nature and technology	
Sustainability and Biomaterials	105
Biomaterials	
Polymer Processing for Healthcare Technologies	
Wahlfach 3	
Quantenchemische Rechenmethoden	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	
Modul Praktikum (Wahlfach 3) – Makromolekulare Chemie	140
Masterpraktikum Wahlfach	
Masterpraktikum Wahlfach Anorganische Chemie	
Masterpraktikum Wahlfach Organische Chemie	
Masterpraktikum Wahlfach Physikalische Chemie	
Masterpraktikum Wahlfach Biochemie	
Masterpraktikum Wahlfach Makromolekulare Chemie	
Projektpraktikum 1 oder 2	
Interdisziplinäre Ergänzung	
Mastermodul	
Epilog	163

Prolog

Fach	Chemie
Abschluss	Master of Science (M.Sc.)
Prüfungsordnungs-	` '
version	2023
Studienform	Vollzeit
Regelstudienzeit	6 Semester
Studienbeginn	Wintersemester und Sommersemester
Hochschule	Albert- Ludwigs- Universität Freiburg
Fakultät	Fakultät für Chemie und Pharmazie
Homepage	www.cup.uni-freiburg.de/de/chemie/studium_chemie
	Der Masterstudiengang Chemie ist forschungsorientiert und konsekutiv.
	Der Masterstudiengang Chemie vermittelt methodische und praktische Kompetenzen sowie vertiefte fachliche Kenntnisse in verschiedenen Fachgebieten der Chemie.
Profil des Studiengangs	Im Pflichtbereich des Studiengangs belegen die Studierenden Lehrveranstaltungen in den Fachgebieten Anorganische Chemie, Organische Chemie und Physikalische Chemie. Im Wahlpflichtbereich haben sie die Möglichkeit, die im Pflichtbereich gewählten Fachgebiete weiter zu vertiefen und/oder zusätzlich Einblicke in weitere Fachgebiete, etwa Analytische Chemie, Biochemie, Funktionsmaterialien, Makromolekulare Chemie, Spektroskopie oder Theoretische Chemie zu gewinnen.
	Während zwei großer Projektpraktika sowie die abschließende Masterarbeit sind die Studierenden an aktuellen Forschungsprojekten beteiligt und werden zu selbständigem wissenschaftlichen Arbeiten ausgebildet. Der erfolgreiche Abschluss des Masterstudiums qualifiziert für berufliche Tätigkeiten insbesondere in der Chemischen Industrie, der wissenschaftlichen Forschung oder der öffentlichen Verwaltung und legt darüber hinaus die Grundlage für eine Weiterqualifikation im Rahmen einer Promotion.
Qualifikationsziele des Studiengangs	 Absolventinnen und Absolventen des Masterstudienganges "Chemie" verfügen über ein vertieftes chemisches Fachwissen und Sicherheit in dessen Anwendung, so dass sie auch komplexe Probleme und Aufgabenstellungen in der Chemie wissenschaftlich beschreiben, analysieren, bewerten, erfolgreich lösen und Ergebnisse kritisch hinterfragen können. sind fähig, die zur Problemlösung benötigte Informationen zu identifizieren, zu finden und zu beschaffen. haben vertiefte Kenntnisse theoretischer und experimenteller chemischer Methoden und verfügen über die Fertigkeit, experimentelle und/oder rechnergestützte Untersuchungen zu planen und eigenständig durchzuführen, die dabei erhaltenen Ergebnisse zu interpretieren und daraus Schlüsse zu ziehen. Sie sind in der Lage, auch unübliche Fragestellungen unter breiter Einbeziehung anderer Disziplinen erarbeiten, um so neue und originelle Erkenntnisse, Produkte und Prozesse zu entwickeln (z.B. im Rahmen einer im Anschluss an das Masterstudium durchgeführten Promotion). haben gemäß ihrer persönlichen Neigung tiefgehende Fachkenntnisse in einem von ihnen ausgewählten

	Spezialisierungsgebiet der Chemie erworben. - können neben der fachlichen Kompetenz Konzepte, Vorgehensweisen und Ergebnisse kommunizieren und diese im Team bearbeiten. Sie sind im Stande, sich in die Sprache und Begriffswelt benachbarter Fächer einzuarbeiten, um über Fachgebietsgrenzen hinweg mit Spezialisten verschiedener chemischer Disziplinen und anderer Lebenswissenschaften zu kommunizieren und zusammenzuarbeiten.
Sprache	deutsch
Zugangs- voraussetzungen	 B.ScAbschluss in Chemie oder einem eng verwandten Studiengang mit mindestens 120 ECTS-Punkten aus chemischen Fachbereichen. Kenntnisse der deutschen Sprache auf dem Niveau B2 und der englischen Sprache auf Niveau B1 des des Gemeinsamen europäischen Referenzrahmens für Sprachen. Details des Bewerbungs- und Zulassungsprozesses sind in der zugehörigen Zulassungsordnung geregelt (siehe "Satzungen" im Eintrag "M.Sc. Chemie" auf der Website www.studium.uni- freiburg.de/de/studienangebot/master)

Verzeichnis der Abkürzungen

B.Sc. Bachelor of Science

HISinOne Campus Management-Portal an der Universität Freiburg (enthält

Vorlesungsverzeichnis und Studienplaner, sowie Leistungsübersichten und

Prüfungsanmeldemöglichkeit)

ILIAS Zentrale Lernplattform der Universität Freiburg

PL Prüfungsleistung (benotete Leistung, geht in die Endnote ein)

SL Studienleistung (mit oder ohne Note, geht in jedem Fall aber nicht in die

Endnote ein)

V Vorlesung
Ü Übung
S Seminar
Pr Praktikum

ECTS Leistungspunkte gemäß dem European Credit Transfer and Accumulation

System (1 ECTS entspricht ungefähr einer Arbeitsbelastung der Studierenden

von 30 Stunden)

SWS Semesterwochenstunden (1 SWS entspricht einer Veranstaltung von 45 Minuten

Dauer, die in der Vorlesungszeit eines Semester wöchentlich, also ~13-15 mal

stattfindet)

Struktur und Aufbau des Studiengangs

Der Master of Science Studiengang Chemie hat einen Leistungsumfang von 120 ECTS-Punkten und gliedert sich gemäß Prüfungsordnung in einen Pflichtbereich und einen Wahlpflichtbereich. Die Prüfungsordnung ist unter "Satzungen" im Eintrag "M.Sc. Chemie" über die Website <u>www.studium.unifreiburg.de/de/studienangebot/master</u> abrufbar.

Tabelle 1: Pflichtbereich (30 ECTS-Punkte)

Modul	Art	sws	ECTS- Punkte	Semester	Studienleistung/ Prüfungsleistung
Anorganische Chemie	V	4	6	1 oder 2	PL: Klausur oder mündliche Prüfung
Organische Chemie	V	4	6	1 oder 2	PL: mündliche Prüfung
Physikalische Chemie	V	4	6	1 oder 2	PL: Klausur
Masterpraktikum Pflichtfach 1	Pr + S	6	6	1 oder 2	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung
Masterpraktikum Pflichtfach 2	Pr+S	6	6	1 oder 2	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung

Abkürzungen in den Tabellen:

Art = Art der Lehrveranstaltung; SWS = vorgesehene Semesterwochenstundenzahl; Semester = empfohlenes Fachsemester bei Aufnahme des Studiums zum Wintersemester; Pr = Praktikum; S = Seminar;

Ü = Übung; V = Vorlesung; PL = Prüfungsleistung; SL= Studienleistung

Tabelle 2: Wahlpflichtbereich (90 ECTS-Punkte)

Modul	Art	sws	ECTS- Punkte	Semester	Studienleistung/ Prüfungsleistung
Wahlfach 1	V	4	6	1 oder 2	PL: Klausur oder mündliche Prüfung
Wahlfach 2	V	4	6	1 oder 2	PL: Klausur oder mündliche Prüfung
Wahlfach 3	V/Pr/Ü	4–6	6	1 oder 2	SL
Masterpraktikum Wahlfach	Pr + S	6	6	1 oder 2	SL PL: schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung

Master of Science im Fach Chemie - HF (Prüfungsordnungsversion 2023)

Projektpraktikum 1	Pr		15	3	SL
Projektpraktikum 2	Pr		15	3	SL
Interdisziplinäre Ergänzung	variabel	variabel	6	1, 2 oder 3	SL
Mastermodul			30	4	SL PL: Masterarbeit

Studienverlauf

Es ist sinnvoll, das Studium gemäß der in den obigen Tabellen genannten empfohlenen Reihenfolge der Fachsemester zu absolvieren. Die folgende Tabelle stellt den empfohlenen Studienverlauf modellhaft dar:

	Projektpraktika / Ergänzung /						
110	Pflichtbereich	ECTS	Wahlpflichtbereich	ECTS	MSc-Arbeit	ECTS	ECTS / FS
	Anorganische Chemie	6	Wahlfach 1 (V)	6			
1. FS	Organische Chemie	6	Masterpraktikum Wahlfach	6			
	Masterpraktikum Pflicht- fach 1 (AC, OC oder PC)	6					30
2. FS	Physikalische Chemie	6	Wahlfach 2 (V)	6			
2. 73	Masterpraktikum Pflicht- fach 2 (AC, OC oder PC)	6	Wahlfach 3 (V/Ü/Pr)	6	Interdisziplinäre Ergänzung	6	30
				- 310			
3. FS					Projektpraktikum 1	15	A
(Mobil Fenster)					Projektpraktikum 2	15	30
4. FS					Mastermodul	30	30
				1			T
Σ		30		24		36	120

Lehr-/Lernformen

Die Lehrveranstaltungen bestehen aus Vorlesungen und Praktika. Vorlesungen werden teilweise durch Übungen, Laborpraktika teilweise durch Seminare ergänzt.

Prüfungsarten und – formate

Vorlesungen

Vorlesungs- Module schließen mit einer Prüfung in Form einer Klausur oder einer mündlichen Prüfung ab. Eine Klausur hat eine Dauer von 90 bis 120 Minuten, eine mündliche Prüfung dauert maximal 30 Minuten.

Praktika

Die Modulnote für Laborpraktika ergibt sich aus praktischen, schriftlichen und mündlichen Leistungen:

- praktische Leistungen bestehen in der erfolgreichen Durchführung von Laborversuchen
- schriftliche Leistungen sind Protokolle, u.a. die Versuchsbeschreibungen, die Dokumentation der Versuchsdurchführungen, die erhaltenen experimentellen Ergebnisse sowie deren Diskussion enthalten.
- mündliche Leistungen sind Labortestate (in der Chemie meist "Kolloquien" genannt), die in der Regel in Vor- und/oder Nachbesprechungen von ca. 15 Minuten Dauer zur Durchführung und den theoretischen Grundlagen des jeweiligen Laborversuchs bestehen.

Die genauen Leistungsanforderungen der jeweiligen Praktika finden sich ebenso wie die Zusammensetzung der Modulnote in der jeweiligen Modulbeschreibung.

Studienleistungen

Studienleistungen in Praktika bestehend in der regelmäßigen Teilnahme gemäß § 13, Abs. 2 der Rahmenprüfungsordnung Master of Science, da die Kompetenzziele in praktischen Veranstaltungen nur in Präsenz erreicht werden können.

Die für eine erfolgreiche Teilnahme an den verschiedenen Ausgestaltungen des Moduls "Wahlfach 3" zu erbringenden Studienleistungen sind in der jeweiligen Modulbeschreibung aufgeführt.

Überfachliche Qualifikationsziele

In die Module des Masterstudiengangs Chemie ist der Erwerb überfachlicher Kompetenzen integriert:

- Wissenschaftliches Arbeiten
- Fähigkeit zu selbstorganisiertem Lernen
- Kommunikationsfähigkeit / Vortragstechniken
- Teamfähigkeit
- Analyse-, Problemlöse- und Entscheidungskompetenzen
- Abstraktionsvermögen / transferierbare Fähigkeiten
- Gesellschaftliches Verantwortungsbewusstsein

Berufliche Perspektiven

Nach Abschluss des Masterstudiengangs Chemie sind Absolventinnen und Absolventen befähigt, eine Promotion in einem der Teilgebiete der Chemie oder eines angrenzenden Gebiets aufzunehmen oder in das Berufsleben einzusteigen. Mögliche Berufsfelder finden sich in der chemischen und

pharmazeutischen Industrie, an Forschungsinstituten, an Hochschulen, im Öffentlichen Dienst oder in anderen Industriezweigen. Die Tätigkeitsfelder reichen von Forschung und Entwicklung über Management, Produktion, Umweltschutz und Vertrieb bis hin zu Marketing oder Beratung.

Name des Kontos	Nummer des Kontos
Pflichtbereich	08LE05KT-PB-MScChem
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

Pflicht/Wahlpflicht (P/WP)	Pflicht

Kommentar

Im Pflichtbereich sind folgende Module zu absolvieren:

- Anorganische Chemie: Nach Wahl der Studierenden muss eins von zwei möglichen Modulen absolviert werden (entweder"Festkörper- und Molekülchemie" im SS oder "Koordinations- und Strukturchemie" im WS).
- Organische Chemie
- Physikalische Chemie

Die Vorlesungen jedes Moduls werden mit einer gemeinsamen Prüfungsleistung abgeschlossen.

Die Module Masterpraktikum Pflichtfach 1 und Masterpraktikum Pflichtfach 2 sind nach eigener Wahl in zwei der drei Fachgebiete Anorganische Chemie, Organische Chemie und Physikalische Chemie (Pflichtfächer) zu absolvieren.

Name des Moduls	Nummer des Moduls
Koordinations- und Strukturchemie	08LE05MO-P-AC2_23
Verantwortliche/r	
Prof. DrIng. Caroline Röhr	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Zugehörige Veranstaltungen						
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand	
Anorganische Strukturchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h	
Koordinationschemie der d-Block-Elemente	Vorlesung	Wahlpflicht	3,0	2,0	90 h	

Lern- und Qualifikationsziele der Lehrveranstaltung

Strukturchemie: Die Studierenden wenden Bindungskonzepte zum Verständnis der Strukturchemie anorganischer Festkörperverbindungen an. Sie ordnen und systematisieren Kristallstrukturen anhand spezifischer Merkmale und Verwandtschaftsbeziehungen. Koordinationschemie: Die Studierenden können Struktur, Eigenschaften und Reaktivität von Koordinationsverbindungen anhand von Bindungstheorien und anorganisch-chemischen Konzepten erklären.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modu		
Koordinations- und Strukturchemie 08LE05MO-P-AC2_23		
Veranstaltung		
Anorganische Strukturchemie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID010033	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Die Vorlesung umfasst Konzepte zur Beschreibung von Kristallstrukturen (Koordinationspolyeder und ihre Verknüpfung, dichteste Packungen und Besetzung der Lücken) sowie Konzepte der chemischen Bindung (ionisch, kovalent, metallisch). Ausgehend hiervon werden Kristallstrukturen der so abgeleiteten Stoffklassen behandelt: Nichtmetalle (Elementstrukturen), kovalente Verbindungen, polyanionische und polykationische Verbindungen, Metalle, intermetallische Phasen, Ionenkristalle.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

M.Ed. Chemie: Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

U. Müller: Anorganische Strukturchemie, Vieweg+Teubner, 2008 Vorlesungsaufzeichnungen: http://ruby.chemie.uni-freiburg.de/Vorlesung/strukturchemie_0.html Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Koordinations- und Strukturchemie	08LE05MO-P-AC2_23	
Veranstaltung		
Koordinationschemie der d-Block-Elemente		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID010032	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- Struktur, Bindung und Eigenschaften von Werner-Komplexen: Liganden und Geometrien, Ligandenfeldtheorie, Molekülorbitaltheorie, Elektron-Elektron-Wechselwirkungen, Analytische Methoden zum Studium von Werner-Komplexen
- 2. Reaktionen von Werner- Komplexen: Komplexbildungskonstanten/- stabilität, Chelateffekt, Ligandsubstitutionsreaktionen, Redoxreaktionen von Komplexen, "nicht-unschuldige" Liganden, Kationensäuren, protonengekoppelter Elektronentransfer, photochemische Reaktionen
- 3. Metallorganische Chemie: 18-Elektronen-Regel, Carbonyl- und "carbonylähnliche" Komplexe, Verbindungen mit C-, P- und H-Liganden, Grundreaktionen der Organometallchemie, Organometallische Katalyse

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023):

Modul Koordinations- und Strukturchemie: Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

Modul Koordinationschemie und Reaktionsmechanismen: Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Literatur

Housecroft / Sharpe, Inorganic Chemistry, Pearson Weber, Koordinationschemie, Springer Spektrum Janiak et al., Riedel Moderne Anorganische Chemie, deGruyter

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23
Verantwortliche/r	
Prof. Dr. Harald Hillebrecht	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Festkörperchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Anorganische Molekülchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Festkörperchemie: Die Studierenden können strukturbestimmende Faktoren für Festkörper in vorgegebenen Systemen einordnen und für neuartige Systeme eine Vorhersage geben. Auf dieser Basis können sie die insbesondere die physikalischen Eigenschaften ableiten und verstehen. Der Unterschied zwischen Ideal- und Realstruktur mit den Konsequenzen für das chemische und physikalische Verhalten ist verstanden.

Molekülchemie: Die Studierenden können Struktur und Reaktivität anorganischer und metallorganischer Molekülverbindungen erklären und erlernte Konzepte zum Verständnis der Stoffchemie anwenden. Schwerpunkte sind die Beschreibung der chemischen Bindung, von Lewis Acidität bis zur aktuellen Forschung.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft.

Die Note des Moduls ist die Note der mündlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modu	
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23
Veranstaltung	
Festkörperchemie	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID010028

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- 1. Strukturbestimmende Faktoren für Metalle bzw. Legierungen und ionische Verbindungen
- 2. Strukturen der wichtigsten Kristallstrukturen
- 3. Unterschied Ideal- und Realstruktur und Methoden zur Einkristallzucht
- 4. Synthesemethoden für Festkörper mit Schwerpunkt Festkörperreaktionen
- 5. Mischkristalle, Phasendiagramme und Phasenumwandlungen
- 6. Physikalische Eigenschaften von Festkörpern (Magnetismus, Supraleitung, dielektrische Eigenschaften, optische Eigenschaften, Elektronen- und Ionenleitfähigkeit)

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

- U. Müller: Anorganische Strukturchemie, Vieweg+Teubner
- A. R. West: Grundlagen der Festkörperchemie, Wiley-VCH
- W. Kleber, K Bohm: Einführung in die Kristallographie
- R. Tilley: Understanding Solids, Wiley-VCH

Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben, weitere Unterlagen auf ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23
Veranstaltung	
Anorganische Molekülchemie	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID010029
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Ausgehend von fundamentalen chemischen Konzepten wie Ionisierungsenergie, Elektronenaffinität und Elektronegativität werden mittels der vertieften Verwendung von der MO-Theorie, Strukturen und Reaktivitäten anorganischer und metallorganischer Molekülverbindungen erklärt. Die behandelten Stoffklassen sowie technisch wichtige Synthesen umfassen: molekulare metallorganische Verbindungen der Hauptgruppen (Li, Be-Ba, Al (Ga-Tl), Si-Pb), Exkurs zu Übergangsmetall-Olefin- und Acetylen-Komplexen. In einem zweiten Teil der Vorlesung wird ein vertiefender Blick auf Lewis Acidität geworfen und deren molekulare Ursachen über die MO Theorie nachvollzogen, Skalen für deren Messung vorgestellt und entwickelt, und Anwendungen wie Olefin-Polymerisation bzw. die Chemie der frustrierten Lewis Paare vorgestellt.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

C. E. Housecroft, Inorganic Chemistry, 5. Auflage, Pearson, 2018 und weitere in der VL genannte. Vorlesungsaufzeichnungen: Alle Unterlagen inkl. PDF-Dateien der Folien und Videos der gesamten VL aus der Coronazeit stehen auf ILIAS im Bereich des MSc Chemie, Anorganische Chemie, AC VI Molekülchemie.

keine

Γ

Name des Moduls	Nummer des Moduls
Organische Chemie	08LE05MO-P-OC_23
Verantwortliche/r	
Prof. Dr. Bernhard Breit Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	60 h
Selbststudium	120 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	nur im Wintersemester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Aromaten, Heteroaromaten und zugehörige C-C Knüpfungsreaktionen	Vorlesung	Pflicht	6,0	4,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können elektronische und physikalische Eigenschaften von Aromaten und Heteroaromaten benennen und sowohl klassische als auch moderne Synthesemethoden dieser Verbindungen, zum Beispiel über metallkatalysierte Kreuzkupplungen, beschreiben. Sie können die Chemie der Aromaten und Heteroaromaten in den Gesamtkontext der Organischen Chemie einordnen und die Zusammenhänge mit ausgewählten Gebieten der modernen Organischen Chemie erklären. Das Modul versetzt die Studierenden in die Lage, ein – sowohl synthetisch als auch materialwissenschaftlich und bioorganisch - wichtiges Feld der Organischen Chemie zu verstehen und die erworbenen Kenntnisse auch in Nachbardisziplinen einzusetzen.

Zusammensetzung der Modulnote

Dieses Modul wird mit einer benoteten mündlichen Prüfung abgeschlossen (30 Minuten). Die Note der mündlichen Prüfung ist die Modulnote.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modu		
Organische Chemie	08LE05MO-P-OC_23	
Veranstaltung		
Aromaten, Heteroaromaten und zugehörige C-C Knüpfungsreaktionen		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID020020	

ECTS-Punkte	6,0
Arbeitsaufwand	90 h
Präsenzstudium	60 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprachen	deutsch, englisch

a) Vorkommen von Aromaten und Heteroaromaten; b) Struktur und Reaktivität von Aromaten; c) Struktur und Reaktivität von Heteroaromaten; d) Synthesen ausgewählter Aromaten und Heteroaromaten; e) Metall-katalysierte Kupplungsreaktionen; f) Diskussion ausgewählter Synthesen und Anwendungen anhand von Fallbeispielen.

Zu erbringende Prüfungsleistung

Mündliche Prüfung (30 min)

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte: (für Master PO 2011) Mündliche Prüfung

Literatur

Literatur

Handouts und Fallbeispiele zum Modul über Ilias.

T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles, Wiley-VCH, 3rd Edition

J. A. Joule, K. Mills, Heterocyclic Chemistry, Wiley, 5th Edition

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Name des Moduls	Nummer des Moduls
Physikalische Chemie	08LE05MO-P-PC_23
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	nur im Sommersemester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Master-Pflicht-Vorlesung Physikalische Chemie	Vorlesung	Pflicht	6,0	4,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden beherrschen die Grundlagen der Statistischen Thermodynamik. Sie haben ein Grundverständnis für die Übertragung der theoretischen Kenntnisse auf praktische Anwendungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Mod		
Physikalische Chemie	08LE05MO-P-PC_23	
Veranstaltung		
Master-Pflicht-Vorlesung Physikalische Chemie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030021	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	60 h
Selbststudium	120 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Grundlagen der Statistik: Mittelwert, Häufigkeit und Wahrscheinlichkeit, Wahrscheinlichkeitsverteilungsfunktionen; Konzept der Zustandssumme; Berechnung thermodynamischer Funktionen idealer Gase; ideale kristalline Festkörper; reale Gase; Fluide; Quantenstatistiken und deren Anwendung; Transportphänomene; Reaktionskinetik.

Besprechung ausgewählter Themen der Physikalischen Chemie bzw. Physik: z. B. Bose-Einstein-Kondensat, Laserkühlung, molekulare Maschinen, Moleküldynamik- und Monte-Carlo-Simulation realer Fluide, Hyperpolarisationsexperimente.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 4,5 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

Gerd Wedler, Hans-Joachim Freund: "Lehr- und Arbeitsbuch der Physikalischen Chemie", Wiley-VCH Peter W. Atkins, Julio de Paula: "Physikalische Chemie", Wiley-VCH

Wolfgang Göpel, Hans-Dieter Wiemhöfer: "Statistische Thermodynamik", Spektrum Akademischer Verlag Heidelberg

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Masterpraktikum Anorganische Chemie	08LE05MO-MPr-AC_23
Verantwortliche/r	
Dr. Martin Ade Dr. Burkhard Butschke	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Anorganische Chemie	Praktikum	Pflicht	5,0	5,0	150 h
Seminar zum Masterpraktikum Anorganische Chemie	Seminar	Pflicht	1,0	1,0	30 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können fortgeschrittene Synthesemethoden der anorganischen Chemie praktisch anwenden und die Versuchsdurchführungen dazu selbständig ausarbeiten. Sie können unter Inertbedingungen mit empfindlichen/pyrophoren Substanzen arbeiten und spezifische Techniken für die Synthese und Einkristallzüchtung nichtmolekularer anorganischer Feststoffe und Materialien selbstständig durchführen. Die Studierenden können Präparate mittels moderner physikalischer Methoden, insbesondere Spektroskopie und Diffraktometrie, charakterisieren. Sie können Struktur und Eigenschaften von Stoffen miteinander in Beziehung setzen. Die Studierenden sind in der Lage, ihre Präparate, deren Synthese und Charakterisierung sowie die damit verbundenen chemischen und physikalisch-chemischen Konzepte zu erklären und zu präsentieren.

Zusammensetzung der Modulnote

Molekülteil: 40 %, Festkörperteil: 40 %, studentisches Seminar: 20 %

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls
Masterpraktikum Anorganische Chemie	08LE05MO-MPr-AC_23
Veranstaltung	
Masterpraktikum Anorganische Chemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID010030
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Präsenzstudium	90 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Das präparativ ausgerichtete Praktikum besteht aus Teilen zur Molekülchemie und zur Festkörperchemie. Molekülteil: präparatives Arbeiten unter Inertbedingungen mit empfindlichen/pyrophoren Substanzen (Phosphane, Silane, Metallalkyle, Übergangsmetallkomplexe, Brønsted-Supersäuren, schwach koordinierende Anionen/Kationen, etc.), Charakterisierung der Produkte über NMR-, IR- und Raman-Spektroskopie sowie ggfs. Massenspektrometrie oder Einkristalldiffraktometrie.

Festkörperteil: Synthesemethoden und -techniken für anorganische Festkörper und Funktionsmaterialien (Festkörperreaktionen, Sol-Gel- und Solvothermalsynthesen, Schmelzlösungskristallisationen, chemische Transportreaktionen), Charakterisierung über Röntgenbeugung, IR- und Raman-Spektroskopie sowie ggfs. thermische Analysemethoden (DTA, TG, DSC), elektrische und magnetische Messungen.

Zu erbringende Prüfungsleistung

Praktische Arbeit, schriftliche Ausarbeitungen (Protokolle), Kolloquien zu den Präparaten, Übungen zur Röntgenbeugung und zur Kristallchemie.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit, verpflichtende Teilnahme an Sicherheitsunterweisung und Einführungsseminaren zu Methoden im Praktikum, Erstellung von Betriebsanweisungen, Platzübernahme und Platzabgabe.

Literatur

Skripte zum Praktikum

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls Nummer des Modu		
Masterpraktikum Anorganische Chemie	08LE05MO-MPr-AC_23	
Veranstaltung		
Seminar zum Masterpraktikum Anorganische Chemie		
Veranstaltungsart	Nummer	
Seminar	08LE05S-ID010030	

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	15 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Im studentischen Seminar zum MPAC stellen die Studierenden ihre Präparate in Form von Kurzvorträgen vor. Dabei sollen sowohl theoretische Grundlagen sowie die im Labor angewandten Synthese- und Charakterisierungsmethoden diskutiert werden.

Zu erbringende Prüfungsleistung

Mündliche Präsentation im studentischen Seminar: Seminarvortrag im Umfang von ca. 15 min zu einem von der Praktikumsleitung gegebenen Thema mit Bezug zu den eigenen Präparaten.

Zu erbringende Studienleistung

Keine.

Literatur

Skripte zum Praktikum

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Masterpraktikum Organische Chemie	08LE05MO-MPr-OC_23
Verantwortliche/r	
Prof. Dr. Bernhard Breit Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Organische Chemie	Praktikum	Pflicht	6,0	6,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Erwerb weiterführender Arbeitsweisen und -techniken der präparativen Organischen Chemie.

Zusammensetzung der Modulnote

Schriftliche Ausarbeitung, mündliche Präsentation, praktische Leistung gehen zu gleichen Teilen in die Note ein.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls
Masterpraktikum Organische Chemie	08LE05MO-MPr-OC_23
Veranstaltung	
Masterpraktikum Organische Chemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID020025
Veranstalter	
Institut für Organische Chemie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	150 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Vermittlung weiterführender Arbeitsweisen und -techniken der präparativen Organischen Chemie; ggf. unter Wasser- und Luftausschluss.

Besuch der Organisch-Chemischen-Kolloquien und GDCh-Vorträge des Praktikums-Semesters.

Zu erbringende Prüfungsleistung

Schriftliche Ausarbeitung, mündliche Präsentation, praktische Leistung

Zu erbringende Studienleistung

Vorbesprechung, Sicherheitsbelehrung

Nachweis des Besuchs der Organisch-Chemischen-Kolloquien und GDCh-Vorträge des Praktikums-Semesters.

Literatur

Handouts zum Praktikum ggf. über Ilias.

R. Brückner et al., Praktikum Präparative Organische Chemie - Organisch Chemisches Fortgeschrittenenpraktikum, Spektrum Akademischer Verlag, Heidelberg, 2009.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Masterpraktikum Physikalische Chemie	08LE05MO-MPr-PC_23
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Physikalische Chemie (M.Sc. Chemie) und Fortgeschrittenenpraktikum Physikalische Chemie (M.Ed. Chemie)	Praktikum und Semi- nar	Pflicht	6,0	6,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Im Masterpraktikum Physikalische Chemie werden Experimente zu komplexeren Themen der Spektroskopie, der Kinetik, der Mikroskopie im molekuren Maßstab und zu quantenchemischen Berechnungen (Hartree-Fock, Møller-Plesset) angeboten. Neben der Kenntnis der zugrundeliegenden Theorien, die gegenüber dem Stoff der Vorlesungen und Übungen vertieft behandelt werden, soll das Verständnis für aufwändigere Versuchsaufbauten vermittelt werden, das die Datenanalyse und die Interpreation der Messergebnisse einschließt.

Zusammensetzung der Modulnote

M.Sc. Chemie (2023): Die Modulnote setzt sich zusammen aus:

- 20 % Seminarvortrag
- 80 % Einzelbewertungen der mündlichen Versuchsvorbesprechungen und Versuchsprotokolle

Verwendbarkeit des Moduls

M.Sc. Chemie

 $\overline{}$

Name des Moduls	Nummer des Moduls	
Masterpraktikum Physikalische Chemie	08LE05MO-MPr-PC_23	
Veranstaltung		
Masterpraktikum Physikalische Chemie (M.Sc. Chemie) und Fortgeschrittenenpraktikum Physikalische Chmie (M.Ed. Chemie)		
Veranstaltungsart	Nummer	
Praktikum und Seminar	08LE05P-ID030020	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	90 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Vermittelt wird ein Einblick in Physikalisch-Chemische Methoden der modernen Naturwissenschaften. Dazu werden Experimente aus verschiedenen Bereichen der Physikalischen Chemie, wie z. B. der Spektroskopie, der theoretischen Chemie, der Mikroskopie im molekularen Maßstab, der magnetischen Resonanzspektroskopie und der Kinetik angeboten. Neben der Kenntnis der zu Grunde liegenden Theorien, die gegenüber dem Stoff der Vorlesungen und der Übungen hier vertieft behandelt werden, soll das Verständnis für aufwändigere Versuchsaufbauten vermittelt werden, das die Datenanalyse und die Interpretation der Messergebnisse einschließt.

- M. Sc. Chemie (2023): Die Studierenden führen sechs Experimente durch.
- M. Ed. Chemie: Die Studierenden führen drei Experimente durch.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Erfolgreiche Absolvierung von Vorgesprächen zu den einzelnen Versuchen, die Erstellung von Versuchsprotokollen, sowie die Konzeption und Präsentation eines Vortrages zu einem vorgegebenen Thema aus dem Bereich der Physikalischen Chemie.

M.Ed. Chemie: Keine.

Zu erbringende Studienleistung

M. Sc. Chemie: Praktische Durchführung von Experimenten gemäß Versuchsanleitung

M. Ed. Chemie: Erfolgreiche Absolvierung von Vorgesprächen zu den einzelnen Versuchen, die praktische Durchführung von Experimenten gemäß Versuchsanleitung, die Erstellung von Versuchsprotokollen, sowie die Konzeption und die Präsentation eines Vortrages zu einem vorgegebenen Thema aus dem Bereich der Physikalischen Chemie.

M.Ed. Chemie: Die benotete Studienleistung setzt sich zusammen aus:

- 25 % Seminarvortrag
- 75 % Einzelbewertungen der mündlichen Versuchsvorbesprechungen und Versuchsprotokolle (Vorbesprechung : Protokoll = 1:1)

Literatur

Peter W. Atkins, Julio de Paula, James J. Keeler: "Physikalische Chemie", Wiley-VCH Gerd Wedler, Hans-Joachim Freund: "Lehr und Arbeitsbuch der Physikalischen Chemie", Wiley-VCH

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Kontos	Nummer des Kontos
Wahlfach 1 oder 2	08LE05KT-WF1
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Kommentar

Die folgenden Module können als Wahlfach 1 oder 2 belegt werden. Die Studierenden wählen aus den hier aufgeführten Modulen anhand ihrer individuellen Studieninteressen.

Name des Moduls	Nummer des Moduls
Koordinations- und Strukturchemie	08LE05MO-P-AC2_23
Verantwortliche/r	
Prof. DrIng. Caroline Röhr	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Anorganische Strukturchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Koordinationschemie der d-Block-Elemente	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Strukturchemie: Die Studierenden wenden Bindungskonzepte zum Verständnis der Strukturchemie anorganischer Festkörperverbindungen an. Sie ordnen und systematisieren Kristallstrukturen anhand spezifischer Merkmale und Verwandtschaftsbeziehungen. Koordinationschemie: Die Studierenden können Struktur, Eigenschaften und Reaktivität von Koordinationsverbindungen anhand von Bindungstheorien und anorganisch-chemischen Konzepten erklären.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modu	
Koordinations- und Strukturchemie	08LE05MO-P-AC2_23
Veranstaltung	
Anorganische Strukturchemie	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID010033

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Die Vorlesung umfasst Konzepte zur Beschreibung von Kristallstrukturen (Koordinationspolyeder und ihre Verknüpfung, dichteste Packungen und Besetzung der Lücken) sowie Konzepte der chemischen Bindung (ionisch, kovalent, metallisch). Ausgehend hiervon werden Kristallstrukturen der so abgeleiteten Stoffklassen behandelt: Nichtmetalle (Elementstrukturen), kovalente Verbindungen, polyanionische und polykationische Verbindungen, Metalle, intermetallische Phasen, Ionenkristalle.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

M.Ed. Chemie: Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

U. Müller: Anorganische Strukturchemie, Vieweg+Teubner, 2008 Vorlesungsaufzeichnungen: http://ruby.chemie.uni-freiburg.de/Vorlesung/strukturchemie_0.html Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Koordinations- und Strukturchemie	08LE05MO-P-AC2_23
Veranstaltung	
Koordinationschemie der d-Block-Elemente	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID010032

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- 1. Struktur, Bindung und Eigenschaften von Werner-Komplexen: Liganden und Geometrien, Ligandenfeldtheorie, Molekülorbitaltheorie, Elektron-Elektron-Wechselwirkungen, Analytische Methoden zum Studium von Werner-Komplexen
- 2. Reaktionen von Werner- Komplexen: Komplexbildungskonstanten/- stabilität, Chelateffekt, Ligandsubstitutionsreaktionen, Redoxreaktionen von Komplexen, "nicht-unschuldige" Liganden, Kationensäuren, protonengekoppelter Elektronentransfer, photochemische Reaktionen
- 3. Metallorganische Chemie: 18-Elektronen-Regel, Carbonyl- und "carbonylähnliche" Komplexe, Verbindungen mit C-, P- und H-Liganden, Grundreaktionen der Organometallchemie, Organometallische Katalyse

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023):

Modul Koordinations- und Strukturchemie: Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

Modul Koordinationschemie und Reaktionsmechanismen: Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Literatur

Housecroft / Sharpe, Inorganic Chemistry, Pearson Weber, Koordinationschemie, Springer Spektrum Janiak et al., Riedel Moderne Anorganische Chemie, deGruyter

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls			
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23			
Verantwortliche/r				
Prof. Dr. Harald Hillebrecht				
Fachbereich / Fakultät				
Fakultät für Chemie und Pharmazie				

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Zugehörige Veranstaltungen							
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand		
Festkörperchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h		
Anorganische Molekülchemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h		

Lern- und Qualifikationsziele der Lehrveranstaltung

Festkörperchemie: Die Studierenden können strukturbestimmende Faktoren für Festkörper in vorgegebenen Systemen einordnen und für neuartige Systeme eine Vorhersage geben. Auf dieser Basis können sie die insbesondere die physikalischen Eigenschaften ableiten und verstehen. Der Unterschied zwischen Ideal- und Realstruktur mit den Konsequenzen für das chemische und physikalische Verhalten ist verstanden.

Molekülchemie: Die Studierenden können Struktur und Reaktivität anorganischer und metallorganischer Molekülverbindungen erklären und erlernte Konzepte zum Verständnis der Stoffchemie anwenden. Schwerpunkte sind die Beschreibung der chemischen Bindung, von Lewis Acidität bis zur aktuellen Forschung.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft.

Die Note des Moduls ist die Note der mündlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modu		
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23	
Veranstaltung		
Festkörperchemie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID010028	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- 1. Strukturbestimmende Faktoren für Metalle bzw. Legierungen und ionische Verbindungen
- 2. Strukturen der wichtigsten Kristallstrukturen
- 3. Unterschied Ideal- und Realstruktur und Methoden zur Einkristallzucht
- 4. Synthesemethoden für Festkörper mit Schwerpunkt Festkörperreaktionen
- 5. Mischkristalle, Phasendiagramme und Phasenumwandlungen
- 6. Physikalische Eigenschaften von Festkörpern (Magnetismus, Supraleitung, dielektrische Eigenschaften, optische Eigenschaften, Elektronen- und Ionenleitfähigkeit)

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

- U. Müller: Anorganische Strukturchemie, Vieweg+Teubner
- A. R. West: Grundlagen der Festkörperchemie, Wiley-VCH
- W. Kleber, K Bohm: Einführung in die Kristallographie
- R. Tilley: Understanding Solids, Wiley-VCH

Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben, weitere Unterlagen auf ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

ame des Moduls Nummer des Modu	
Festkörper- und Molekülchemie	08LE05MO-P-AC1_23
Veranstaltung	
Anorganische Molekülchemie	
Veranstaltungsart	Nummer
Vorlesung 08LE05V-ID010029	
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Ausgehend von fundamentalen chemischen Konzepten wie Ionisierungsenergie, Elektronenaffinität und Elektronegativität werden mittels der vertieften Verwendung von der MO-Theorie, Strukturen und Reaktivitäten anorganischer und metallorganischer Molekülverbindungen erklärt. Die behandelten Stoffklassen sowie technisch wichtige Synthesen umfassen: molekulare metallorganische Verbindungen der Hauptgruppen (Li, Be-Ba, Al (Ga-Tl), Si-Pb), Exkurs zu Übergangsmetall-Olefin- und Acetylen-Komplexen. In einem zweiten Teil der Vorlesung wird ein vertiefender Blick auf Lewis Acidität geworfen und deren molekulare Ursachen über die MO Theorie nachvollzogen, Skalen für deren Messung vorgestellt und entwickelt, und Anwendungen wie Olefin-Polymerisation bzw. die Chemie der frustrierten Lewis Paare vorgestellt.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

C. E. Housecroft, Inorganic Chemistry, 5. Auflage, Pearson, 2018 und weitere in der VL genannte. Vorlesungsaufzeichnungen: Alle Unterlagen inkl. PDF-Dateien der Folien und Videos der gesamten VL aus der Coronazeit stehen auf ILIAS im Bereich des MSc Chemie, Anorganische Chemie, AC VI Molekülchemie.

Teilnahmevoraussetzung laut Prüfungsordnung

keine

Г

Name des Moduls	Nummer des Moduls
Moderne Analytische Methoden in der Anorganischen Chemie	08LE05MO-AC-WF1_23
Verantwortliche/r	
Prof. Dr. Ingo Krossing Prof. DrIng. Caroline Röhr	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	60
Selbststudium	120
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine. Dieses Wahlmodul kann nicht mit einem anderen Wahlmodul kombiniert werden, welches eine der beiden Modul-Veranstaltungen enthält.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Basiskurs Spektroskopie und Elektronenmi- kroskopie	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Grundlagen der Röntgenbeugung	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Im Basiskurs Spektroskopie und Elektronenmikroskopie erwerben die Studierenden vertiefende Kenntnisse in den Bereichen Schwingungsspektroskopie, Massenspektrometrie, multinukleare NMR-Spektroskopie und Elektronenmikroskopie, und sie lernen, diese Methoden auf die Analyse anorganischer Molekülverbindungen und Materialien anzuwenden. Sie erlernen zudem die Grundlagen der Röntgenbeugung und können sowohl die zugrundeliegenden Methoden als auch die Ergebnisse basierend auf den Grundlagen von Symmetrie, Kristallographie und Beugungstheorie erklären.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls	
Moderne Analytische Methoden in der Anorganischen Chemie 08LE05MO-AC-WF		
Veranstaltung		
Basiskurs Spektroskopie und Elektronenmikroskopie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05S-ID010038	
Veranstalter		
Institut für Anorganische und Analytische Chemie		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- Analyse ein und zweidimensionaler multinuklearer NMR-Spektren anorganischer Molekülverbindungen anhand von Beispielen
- IR- und Raman-Spektroskopie, theoretische Grundlagen, Gruppenschwingungen, Beispielspektren, Typen von Schwingungsspektrometern
- Grundlagen der Massenspektrometrie, Ionisierungsmethoden, Analysatoren, Isotopenmuster, Fragmentation, Analyse von Massenspektren anhand von Beispielen, Tandem-Massenspektrometrie
- Physikalische Grundlagen der Elektronenmikroskopie, Aufbau eines Elektronenmikroskops, praktische Probleme der Messung, Transmissionselektronenmikroskopie, Rasterelektronenmikroskopie, EDX-Spektroskopie

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie(PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemie (Prüfungsordnung 2023): Keine.

M.Sc. Chemie (Prüfungsordnung 2011): Für das Modul "Methoden und Konzepte":1 ECTS für aktive Mitarbeit (schriftliche Bearbeitung von Aufgaben)

Literatur

Harald Günther, NMR Spectroscopy, Third Edition, Wiley-VCH, Weinheim, 2013 Helmut Günzler, Hans-Ulrich Gremlich, IR-Spektroskopie, 4. Aufl., WileyVCH, 2003 Jürgen H. Gross, Massenspektrometrie, Springer Spektrum, 2013 L. Reimer, G. Pfefferkorn, Rasterelektronenmikroskopie, Springer Verlag, 1999

Teilnahmevoraussetzung laut Prüfungsordnung

г

Name des Moduls	Nummer des Moduls	
Moderne Analytische Methoden in der Anorganischen Chemie 08LE05MO-AC-WF1_2		
Veranstaltung		
Grundlagen der Röntgenbeugung		
Veranstaltungsart	Nummer	
Vorlesung	08LE05S-ID010037	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- Grundlagen der Punkt- und Raumgruppen-Symmetrie (Symmetrieoperationen, Punktgruppen, Schönflies- und Hermann-Mauguin-Symbolik, Translationsgitter, Flächen- und Raumgruppen)
- Beugungstheorie (Geometrie der Beugung, Laue-, Bragg-Gleichung, Ewald-Kugel)
- Experimentelles (Röntgenquellen, -optik, -detektoren und -diffraktometer)
- Röntgenpulverdiffraktometrie (Indizierung von Pulverdiffraktogrammen, Phasenanalyse, Reflexprofile)
- Intensitäten von Röntgenreflexen (Atomform- und Strukturfaktor, Phasenproblem und Korrekturfaktoren)
- Gang einer Röntgenstrukturanalyse (Datensammlung und -reduktion, Beugungssymbole, Strukturlösungsmethoden, Strukturverfeinerung und -darstellung

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie(PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemie (Prüfungsordnung 2023): Teilnahme an Übungen im Rahmen der Veranstaltung.

M.Sc. Chemie (Prüfungsordnung 2022): Für das Modul "Methoden und Konzepte": 2 ECTS für aktive Mitarbeit (schriftliche Bearbeitung von Aufgaben)

Literatur

- W. Borchardt-Ott, H. Sowa, Kristallographie Eine Einführung, Springer
- W. Massa, Kristallstrukturbestimmung, Vieweg & Teubner
- L. Spieß et al., Moderne Röntgenbeugung, Springer

Master of Science im Fach Chemie - HF (Prüfungsordnungsversion 2023)

Name des Moduls	Nummer des Moduls
Koordinationschemie und Reaktionsmechanismen	08LE05MO-AC-WF2_23
Verantwortliche/r	
Prof. Dr. Philipp Kurz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	60
Selbststudium	120
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1-2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Hinweis: Dieses Wahlmodul kann nicht belegen, wer das Modul "Koordinations- und Strukturchemie" bereits für den Pflicht- oder Wahlbereich gewählt hat.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Koordinationschemie der d-Block-Elemente	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Aufklärung von Reaktionsmechanismen	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Koordinationschemie: Die Studierenden können Struktur, Eigenschaften und Reaktivität von Koordinationsverbindungen anhand von Bindungstheorien und anorganisch-chemischen Konzepten erklären. Reaktionsmechanismen: die Studierenden kennen Schlüsselkonzepte zum Verständnis von Reaktionsmechanismen sowie verschiedene Methoden zu deren Untersuchung und Aufklärung.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen Modulprüfung geprüft.

Die Note des Moduls ist die Note der mündlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls	
Koordinationschemie und Reaktionsmechanismen	08LE05MO-AC-WF2_23	
Veranstaltung		
Koordinationschemie der d-Block-Elemente		
Veranstaltungsart Nummer		
Vorlesung 08LE05V-ID010032		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

- Struktur, Bindung und Eigenschaften von Werner-Komplexen: Liganden und Geometrien, Ligandenfeldtheorie, Molekülorbitaltheorie, Elektron-Elektron-Wechselwirkungen, Analytische Methoden zum Studium von Werner-Komplexen
- 2. Reaktionen von Werner- Komplexen: Komplexbildungskonstanten/- stabilität, Chelateffekt, Ligandsubstitutionsreaktionen, Redoxreaktionen von Komplexen, "nicht-unschuldige" Liganden, Kationensäuren, protonengekoppelter Elektronentransfer, photochemische Reaktionen
- 3. Metallorganische Chemie: 18-Elektronen-Regel, Carbonyl- und "carbonylähnliche" Komplexe, Verbindungen mit C-, P- und H-Liganden, Grundreaktionen der Organometallchemie, Organometallische Katalyse

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023):

Modul Koordinations- und Strukturchemie: Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

Modul Koordinationschemie und Reaktionsmechanismen: Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls)

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Anorganische Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Literatur

Housecroft / Sharpe, Inorganic Chemistry, Pearson Weber, Koordinationschemie, Springer Spektrum Janiak et al., Riedel Moderne Anorganische Chemie, deGruyter

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Koordinationschemie und Reaktionsmechanismen 08LE05MO-AC-WF2_		
Veranstaltung		
Aufklärung von Reaktionsmechanismen		
Veranstaltungsart Nummer		
Vorlesung	08LE05V-ID010327	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

In der Vorlesung werden Konzepte und Methoden vermittelt, mit deren Hilfe Reaktionsmechanismen verstanden, beschrieben und aufgeklärt werden können: Potentialenergiefläche, Reaktionskoordinate, Übergangszustand, Arrhenius- und Eyring-Gleichungen, Aktivierungsparameter, Hammond Postulat, Prinzip der mikroskopischen Reversibilität, Lösemitteleffekte, kinetische Methoden, Isotopenmarkierung, kinetische Isotopeneffekte, Tunneleffekte, Linear Free-Energy Relationships (LFERs), Bell-Evans-Polanyi-Prinzip, Hammett-Gleichung, Two-State-Reactivity.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Mündliche Prüfung (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Literatur

Jim D. Atwood, Inorganic and Organometallic Reaction Mechanisms, Wiley-VCH

Eric V. Anslyn, Dennis A. Dougherty, Modern Physical Organic Chemistry, University Science Books, 2006

Teilnahmevoraussetzung laut Prüfungsordnung

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Bachelorstudium Chemie

Name des Moduls	Nummer des Moduls
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Verantwortliche/r	·
Prof. Dr. Bernhard Breit Prof. Dr. Oliver Dumele Prof. Dr. Henning Jessen Prof. Dr. Dietmar Plattner Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1-2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	jedes Studienjahr

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Naturstoffe	Lehrveranstaltung	Wahlpflicht	3,0	2,0	90 h
Chemische Biologie	Vorlesung	Wahlpflicht	3,0	2,0	90 h
C/C-Knüpfungsreaktionen für Fortgeschrittene	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Retrosynthese/Synthesestrategien	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Organokatalyse	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Physikalische Organische Chemie	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Das Qualifikationsziel dieses Moduls besteht darin, den Studierenden moderne Aspekte der Organischen Chemie zu vermitteln. Hierzu kann aus einer Reihe von jeweils 2-stündigen Vorlesungen, die unregelmäßig angeboten werden, gewählt werden (s.u.); es müssen zwei Vorlesungen belegt werden:

Naturstoffe:

Die Studierenden lernen grundlegende Biosynthesewege sowie die Eigenschaften von sekundären Naturstoffen kennen und können diese so klassifizieren. Hierbei wird besonders Wert auf Polyketide, Terpene und Alkaloide gelegt. Abgerundet wird das Portfolio durch eine Vorstellung der Naturstoffe des primären Stoffwechsels wie Kohlenhydrate und Aminosäuren. Die biosynthetischen Erkenntnisse werden dazu benutzt, biomimetische Totalsynthesen von Naturstoffen zu verstehen.

Chemische Biologie:

Die Vorlesung bearbeitet chemische Aspekte der wichtigen Biopolymere (DNA, RNA, Proteine, Zucker, Polyphosphate). Folgende Themenblöcke werden nach Rücksprache mit den Studierenden besprochen: DNA RNA-Synthesen, Peptidsynthese, Proteinbiosynthese, DNA und Proteinsequenzierung, Reprogrammierung des genetischen Codes, RNA Display, Yeast X-Hybrid Screenings, Native und Expressed Chemical Ligation, Click-Chemie, Zuckersynthesen, Synthesen kondensierter Phosphate. Die Themenblöcke werden im Kontext spezifischer Anwendungsbeispiele diskutiert.

C/C-Knüpfungsreaktionen für Fortgeschrittene:

Aufbauend auf Kenntnissen aus den Vorlesungen Organische Chemie im Bachelorstudiengang Chemie, werden moderne C/C-Bindungsknüpfungsreaktionen präsentiert, die sich durch ein hohes Maß an synthetischer Nützlichkeit bewährt haben. Die Studierenden erwerben damit die Fähigkeit Strukturen von beliebigen Kohlenstoffgerüsten zu konstruieren, eine Fähigkeit, die ein Fundament für die darauf aufbauende Vorlesung "Retrosynthese/Synthesestrategien" ist.

Retrosynthese/Synthesestrategien:

Diese Vorlesung hat zum Ziel die Studierenden in die Lage zu versetzen, für ein gegebenes Zielmolekül einen Syntheseplan aufzustellen. Dazu werden Methoden der Retrosynthese sowie bestimmter Synthesestrategien gelehrt.

Organokatalyse:

Die Studierenden haben einen fundierten Überblick über die verschiedenen Aktivierungsmethoden der Organokatalyse. Sie besitzen die Grundlagen um sich neue organokatalytische Prozesse auf molekularer Ebene zu erschließen und mechanistisch zu validieren. Organokatalytische Reaktionen können in eigene Syntheseplanungen integriert und deren Vor- und Nachteile gegenüber übergangsmetall- und enzymkatalysierten C-C, C-H und C-Het Knüpfungsreaktionen bewertet werden.

Physikalische Organische Chemie:

Grundlegende Prinzipien der physikalischen organischen Chemie werden vermittelt.

Zusammensetzung der Modulnote

Eine gemeinsame mündliche Prüfung (30 min) über die beiden gewählten Vorlesungen ergibt die Modulnote.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls		
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1 08LE05MO-C			
Veranstaltung			
Naturstoffe			
Veranstaltungsart Nummer			
Lehrveranstaltung	08LE05V-ID020325		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	unregelmäßig
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

1) Einleitung: Klassifikationen; 2) Grundlegende Bausteine und Mechanismen des Sekundärmetabolismus; 3) Fettsäuren und Polyketide über Acetyl-Coenzym A; 4) Aromatische Aminosäuren und Propanoide über Shikimisäure; 5) Wege zur Terpenoiden und Steroiden; 6) Alkaloide; 7) Peptide, Proteine und Aminosäurederivate; 8) Kohlenhydrate

Zu erbringende Prüfungsleistung

Mündliche Prüfung, zusammen mit einer weiteren Vorlesung des Moduls.

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte: (für Master PO 2011) Mündliche Prüfung

Literatur

Handouts und Fallbeispiele zur Vorlesung über Ilias.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Veranstaltung	
Chemische Biologie	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020323

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

1) Überblick Chemische Biologie; 2) Präbiotische Chemie; 3) DNA; 4) RNA; 5) Proteine; 6) Glycostrukturen; 7) Kondensierte Phosphate

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Mündliche Prüfung, zusammen mit einer weiteren Vorlesung des Moduls.

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte: (für Master PO 2011) Mündliche Prüfung

Literatur

Handouts und Fallbeispiele zur Vorlesung über Ilias. Advanced Chemical Biology; 2023; Hang, Pratt, Prescher

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Veranstaltung	
C/C-Knüpfungsreaktionen für Fortgeschrittene	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020028
Veranstalter	
Institut für Organische Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	unregelmäßig
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

1) Einleitung; 2) 1,2-Additionen an die Carbonylgruppe; 3) Ausgewählte SN- und SN'-Typ-Reaktionen mit C-Nucleophilen; 4) Stereoselektiver Aufbau von C/C-Doppelbindungen; 5) Stereoselektive Aldolreaktionen; 6) Reaktionen im Lewis-aciden Reaktionsfenster; 7) Ringbildung und Ringannelierungsreaktionen

Zu erbringende Prüfungsleistung

Mündliche Prüfung, zusammen mit einer anderen Vorlesung des Moduls.

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte (für Master PO 2011): Mündliche Prüfung

Literatur

Handouts und Übungen zur Vorlesung über Ilias.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Veranstaltung	
Retrosynthese/Synthesestrategien	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020324

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

1) Einleitung; 2) An funktionellen Gruppen orientierte Bindungssätze; 3) Am Molekülgerüst orientierte Bindungssätze; 4) Bausteinorientierte Synthesestrategien; 5) Aufbau cyclischer Strukturen; 6) Schutzgruppen

Zu erbringende Prüfungsleistung

Mündliche Prüfung, zusammen mit einer weiteren Vorlesung des Moduls.

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte (für Master PO 2011): Mündliche Prüfung

Literatur

Handouts und Übungen zur Vorlesung über Ilias.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls Nummer des Mod	
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Veranstaltung	
Organokatalyse	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020012

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

Die Vorlesung gibt einen Überblick über moderne Methoden der Organokatalyse. Unterschiedliche Klas- sen von Organokatalysatoren werden besprochen und diese Anhand ihrer Aktivierungsmoden kategorisiert. Besonderen Wert wird hierbei auf die entsprechenden Konzepte gelegt die nötig sind um Reaktivität und Selektivität der Systeme zu verstehen. Darüber hinaus werden anhand von aktueller Literatur neue Anwendungsfelder von Organokatalysatoren diskutiert, beispielsweise deren Anwendung in der Synthese komplexer (Industriell relevanter) Zielmoleküle oder die Kombination mit Übergangsmetallkatalysatoren und photo-/elektrochemischen Prozessen.

Zu erbringende Prüfungsleistung

Mündliche Prüfung, zusammen mit einer weiteren Vorlesung des Moduls.

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte: (für Master PO 2011) Mündliche Prüfung

Literatur

Handouts und Präsentationsfolien zum Modul über Ilias.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Fortgeschrittene Organische Chemie I oder II - Wahlfach 1	08LE05MO-OC-WF1_23
Veranstaltung	
Physikalische Organische Chemie	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID020024
Veranstalter	
Institut für Organische Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprachen	deutsch, englisch

Die Vorlesung gibt einen Überblick über moderne Methoden der physikalischen organischen Chemie.

Zu erbringende Prüfungsleistung

Mündliche Prüfung, zusammen mit einer weiteren Vorlesung des Moduls.

Zu erbringende Studienleistung

Keine.

Methoden und Konzepte: (für Master PO 2011) Mündliche Prüfung

Literatur

Handouts und Präsentationsfolien zum Modul über Ilias.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Spektroskopische Methoden in den Biowissenschaften	08LE05MO-PC-WF1_23
Verantwortliche/r	
Prof. Dr. Erik Schleicher Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Einführung in die Magnetische Resonanz- spektroskopie	Vorlesung	Wahlpflicht	1,5	1,0	45 h
Spezielle Themen der magnetischen Resonanzspektroskopie	Vorlesung	Wahlpflicht	1,5	1,0	45 h
Moderne spektroskopische Methoden	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden verfügen über eine fundierte Kenntnis über die wichtigsten spektroskopischen Techniken zur Charakterisierung von Biomolekülen. Sie kennen die fundamentalen physikalischen Prinzipien der magnetischen Resonanz (EPR und NMR) und können einfache Spektren interpretieren und quantitativ auswerten.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus den ECTS-gewichteten Einzelbewertungen der mündlichen Abschlussprüfung / den mündlichen Abschlussprüfungen zusammen.

Verwendbarkeit des Moduls

M.Sc. Chemie

Г

Name des Moduls	Nummer des Moduls	
Spektroskopische Methoden in den Biowissenschaften 08LE05MO-PC-WF1		
Veranstaltung		
Einführung in die Magnetische Resonanzspektroskopie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030303	

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Atome und Moleküle in Magnetfeldern: elektrische und magnetische Dipolübergänge; Resonanzphänomen (klassische und quantenmechanische Beschreibung, Relaxation, Bloch-Gleichungen, continuous-wave und gepulste Detektion); instrumentelle Aspekte der Elektronenspinresonanz (Aufbau eines cw-EPR-Spektrometers, Aufbau eines Puls-EPR-Spektrometers); instrumentelle Aspekte der Kernspinresonanz (Aufbau eines modernen NMR-Spektrometers, magnetische Wechselwirkungen in der NMR); magnetische Wechselwirkungen in der EPR (Zeeman-Wechselwirkung: g-Matrix, Hyperfeinwechselwirkung; Elektronenspin-Elektronenspin-Wechselwirkung); Site-directed Spin-Labeling; Spin-Trapping.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) werden 1,5 ECTS Punkte angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

Neil M. Atherton: "Electron Spin Resonance", Ellis Horwood Ltd.

Daniella Goldfarb, Stefan Stoll: "EPR Spectroscopy: Fundamentals and Methods", Wiley-VCH

Arthur Schweiger, Gunnar Jeschke: "Principles of Pulse Electron Paramagnetic Resonance", Oxford University Press

Peter J. Hore, Jonathan A. Jones, Stephen Wimperis: "NMR: The Toolkit", Oxford University Press Peter J. Hore: "Nuclear Magnetic Resonance", Oxford University Press

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Spektroskopische Methoden in den Biowissenschaften	08LE05MO-PC-WF1_23	
Veranstaltung		
Spezielle Themen der magnetischen Resonanzspektroskopie		
Veranstaltungsart Nummer		
Vorlesung	08LE05V-ID030305	

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Continuous-wave EPR; zeitaufgelöste EPR-Verfahren (transiente EPR, Elektronenspinecho-Detektion, transiente Nutation); Hyperfeinspektroskopie (ENDOR, ESEEM, HYSCORE); dipolare Spektroskopie (PELDOR); Simulation von EPR-Spektren; Dichtematrixformalismus und Spindynamik; ein-, zwei- und mehr-dimensionale NMR-Methoden; Relaxationsmessungen und Vektormodell; Prozessierung von NMR-Daten; Hyperpolarisationsverfahren (photo-CIDNP, paraWasserstoff-induzierte Polarisation, DNP).

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Zu erbringende Studienleistung

Keine.

Literatur

Neil M. Atherton: "Electron Spin Resonance", Ellis Horwood Ltd.

Daniella Goldfarb, Stefan Stoll: "EPR Spectroscopy: Fundamentals and Methods", Wiley-VCH

Arthur Schweiger, Gunnar Jeschke: "Principles of Pulse Electron Paramagnetic Resonance", Oxford University Press

Peter J. Hore, Jonathan A. Jones, Stephen Wimperis: "NMR: The Toolkit", Oxford University Press

Peter J. Hore: "Nuclear Magnetic Resonance", Oxford University Press

James Keeler: "Understanding NMR Spectroscopy", John Wiley & Sons

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls		
Spektroskopische Methoden in den Biowissenschaften	08LE05MO-PC-WF1_23		
Veranstaltung			
Moderne spektroskopische Methoden			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID030025		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Fundamentals of modern spectroscopy; recapitulation of general spectroscopy; FT-IR spectroscopy on biomolecules; time-resolved spectroscopy (pulsed lasers, ultrafast spectroscopy, data analysis); high-energy spectroscopy (X-ray spectroscopy, Mößbauer spectroscopy, small-angle X-ray scattering); methods for quantifying interactions (fluorescence anisotropy, surface plasmon resonance); EPR spectroscopy; NMR spectroscopy; Case study: water-oxidizing complex of photosystem I.

Zu erbringende Prüfungsleistung

Für M.Sc. Biochemistry and Biophysics: Keine.

Für M.Sc. Chemie (2023): Mündliche Abschlussprüfung.

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (Po 2011) werden 3 ECTS Punkte angerechnet.

For M.Sc. Biochemistry and Biophysics: None.

For M.Sc. Chemie (2023): Oral exam.

Within the framework of the module examination Physical Chemistry in the M.Sc. Chemistry programme, 3 ECTS points are credited.

M.Ed. Chemie (2023): Joint oral examination of both two lectures (Vorlesung 1 and Vorlesung 2).

Zu erbringende Studienleistung

M.Sc. Chemie (Prüfungsordnung 2023): Keine.

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Peter W. Atkins, Julio de Paula: "Physikalische Chemie", Wiley-VCH

Prakash Saudagar, Timir Tripathi: "Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics", Elsevier, Academic Press

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls
Spektroskopische Methoden in den Materialwissenschaften	08LE05MO-PC-WF2_23
Verantwortliche/r	
Dr. Sabine Richert Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	180,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Einführung in die Magnetische Resonanz- spektroskopie	Vorlesung	Wahlpflicht	1,5	1,0	45 h
Spezielle Themen der magnetischen Resonanzspektroskopie	Vorlesung	Wahlpflicht	1,5	1,0	45 h
Optische Spektroskopie - Grundlagen	Vorlesung	Wahlpflicht	1,5	1,0	45 h
Optische Spektroskopie - Nichtlineare Optik	Vorlesung	Wahlpflicht	1,5	1,0	45 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden verfügen über eine fundierte Kenntnis über die wichtigsten spektroskopischen Techniken zur Charakterisierung von Molekülen oder Materialien. Sie kennen die fundamentalen physikalischen Prinzipien der magnetischen Resonanz (EPR und NMR) und der optischen Spektroskopie und können einfache Spektren interpretieren und guantitativ auswerten.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der gemeinsamen mündlichen Prüfung des Moduls.

Verwendbarkeit des Moduls

M.Sc. Chemie

 $\overline{}$

Name des Moduls	Nummer des Moduls		
Spektroskopische Methoden in den Materialwissenschaften 08LE05MO-PC-WF2			
Veranstaltung			
Einführung in die Magnetische Resonanzspektroskopie			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID030303		

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Atome und Moleküle in Magnetfeldern: elektrische und magnetische Dipolübergänge; Resonanzphänomen (klassische und quantenmechanische Beschreibung, Relaxation, Bloch-Gleichungen, continuous-wave und gepulste Detektion); instrumentelle Aspekte der Elektronenspinresonanz (Aufbau eines cw-EPR-Spektrometers, Aufbau eines Puls-EPR-Spektrometers); instrumentelle Aspekte der Kernspinresonanz (Aufbau eines modernen NMR-Spektrometers, magnetische Wechselwirkungen in der NMR); magnetische Wechselwirkungen in der EPR (Zeeman-Wechselwirkung: g-Matrix, Hyperfeinwechselwirkung; Elektronenspin-Elektronenspin-Wechselwirkung); Site-directed Spin-Labeling; Spin-Trapping.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) werden 1,5 ECTS Punkte angerechnet.

Zu erbringende Studienleistung

Keine.

Literatur

Neil M. Atherton: "Electron Spin Resonance", Ellis Horwood Ltd.

Daniella Goldfarb, Stefan Stoll: "EPR Spectroscopy: Fundamentals and Methods", Wiley-VCH

Arthur Schweiger, Gunnar Jeschke: "Principles of Pulse Electron Paramagnetic Resonance", Oxford University Press

Peter J. Hore, Jonathan A. Jones, Stephen Wimperis: "NMR: The Toolkit", Oxford University Press Peter J. Hore: "Nuclear Magnetic Resonance", Oxford University Press

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls Nummer des Moduls		
Spektroskopische Methoden in den Materialwissenschaften 08LE05MO-PC-WF2_23		
Veranstaltung		
Spezielle Themen der magnetischen Resonanzspektroskopie		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030305	

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Continuous-wave EPR; zeitaufgelöste EPR-Verfahren (transiente EPR, Elektronenspinecho-Detektion, transiente Nutation); Hyperfeinspektroskopie (ENDOR, ESEEM, HYSCORE); dipolare Spektroskopie (PELDOR); Simulation von EPR-Spektren; Dichtematrixformalismus und Spindynamik; ein-, zwei- und mehr-dimensionale NMR-Methoden; Relaxationsmessungen und Vektormodell; Prozessierung von NMR-Daten; Hyperpolarisationsverfahren (photo-CIDNP, paraWasserstoff-induzierte Polarisation, DNP).

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Zu erbringende Studienleistung

Keine.

Literatur

Neil M. Atherton: "Electron Spin Resonance", Ellis Horwood Ltd.

Daniella Goldfarb, Stefan Stoll: "EPR Spectroscopy: Fundamentals and Methods", Wiley-VCH

Arthur Schweiger, Gunnar Jeschke: "Principles of Pulse Electron Paramagnetic Resonance", Oxford University Press

Peter J. Hore, Jonathan A. Jones, Stephen Wimperis: "NMR: The Toolkit", Oxford University Press

Peter J. Hore: "Nuclear Magnetic Resonance". Oxford University Press

James Keeler: "Understanding NMR Spectroscopy", John Wiley & Sons

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls Nummer des Modul		
Spektroskopische Methoden in den Materialwissenschaften 08LE05MO-PC-WF2_2		
Veranstaltung		
Optische Spektroskopie - Grundlagen		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030002	

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Grundlagen der Photochemie: Eigenschaften von Licht; Lichtabsorption und -emission; erweitertes Jablonski-Diagramm und elementare photochemische Prozesse; UV-vis-Absorptionsspektroskopie und Fluoreszenzspektroskopie (instrumentelle und praktische Aspekte); typische Fluorophore und ihre Eigenschaften Molekulare Photophysik und Photochemie: Quenching angeregter Zustände (inkl. Stern-Volmer, statistische und dynamische Fluoreszenzlöschung); Energietransfer (Dexter, Förster); Elektronentransfer (Marcus-Theorie); Protonentransfer; zeitaufgelöste Absorptions-(ns-TA) und Emissionsspektroskopie (TC-SPC), Einfluss von Lösungsmitteln (Solvatation und Solvatochromie)

Aktuelle Anwendungsbeispiele der besprochenen Techniken/Methoden in der Forschung

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) werden 1,5 ECTS Punkte angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemie (2023): Keine.

Für Methoden und Konzepte: 1 ECTS

Kurzreferat über eine aktuelle Anwendung der im Kurs besprochenen Techniken/Methoden in der Forschung.

Literatur

Handouts zur Veranstaltung werden über ILIAS zur Verfügung gestellt

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls Nummer des Modul		
Spektroskopische Methoden in den Materialwissenschaften 08LE05MO-PC-WF2_23		
Veranstaltung		
Optische Spektroskopie - Nichtlineare Optik		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030004	

ECTS-Punkte	1,5
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Einführung in die nichtlineare Optik: optische Komponenten (Lichtquellen, Detektoren) und deren Eigenschaften; Ti:Sapphire-Laser (Aufbau, Eigenschaften); Eigenschaften von Lichtpulsen; Erzeugung neuer Frequenzen (Phase-Matching, nichtlineare Materialien); nichtlineare Prozesse zweiter und dritter Ordnung (SHG, SFG, DFG, Self-Focusing, Self-Phase-Modulation, optischer Kerr-Effekt)

Nichtlineare optische Spektroskopie und Anwendungen: Optisch-parametrische Oszillatoren (OPOs) und Verstärker (OPAs); Pump-Probe-Spektroskopie; Fluorescence-Upconversion (inkl. Fluorescence-Anisotropy); Femtosekunden-Transiente Absorptionsspektroskopie

Aktuelle Anwendungsbeispiele der besprochenen Techniken/Methoden in der Forschung

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Teil der gemeinsamen mündlichen Prüfung der Vorlesungen des Moduls.

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) werden 1,5 ECTS Punkte angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemie (2023): Keine.

Für Methoden und Konzepte: 1 ECTS

Kurzreferat über eine aktuelle Anwendung der im Kurs besprochenen Techniken/Methoden in der Forschung.

Literatur

Handouts zum Modul werden über ILIAS zur Verfügung gestellt

Teilnahmevoraussetzung laut Prüfungsordnung

Keine. Die zum Verständnis wichtigen Konzepte aus Teil 1 werden an den nötigen Stellen kurz wiederholt.

Name des Moduls	Nummer des Moduls
Detection and Analysis of Single Molecules and Molecular Machines 08LE05MO-PC-WF4_	
Verantwortliche/r	
Dr. Bizan Nicolas Anosarwan Balzer Dr. Bianca Hermann Prof. Dr. Thorsten Hugel	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Fluorescence and Force Spectroscopy Methods	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Cellular Self-Organization and Molecular Machines	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Cellular Self-Organization and Molecular Machines	Übung	Wahlpflicht	1,0	1,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden verfügen über eine fundierte Kenntnis experimenteller Methoden in den Bereichen Fluoreszenz und Kraftspektroskopie. Sie kennen die fundamentalen physikalischen Prinzipien, die biologische Systeme kontrollieren, insbesondere molekulare Maschinen und Selbstorganisation.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls Nummer des Modul		
Detection and Analysis of Single Molecules and Molecular Machines 08LE05MO-PC-WF4_23		
Veranstaltung		
Advanced Fluorescence and Force Spectroscopy Methods		
Veranstaltungsart	Nummer	
Vorlesung	08LE05S-ID030205	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Electromagnetic waves, interference, polarization; lenses, microscopes, resolution; fluorescence spectroscopy, fluorescence microscopy; fluorescence correlation spectroscopy (FCS); Förster resonance energy transfer (FRET); super-resolution microscopy (e. g., STED, PALM, SMLM); atomic force microscopy (AFM); optical and magnetic tweezers.

Zu erbringende Prüfungsleistung

Für M.Sc. Biochemistry and Biophysics: Keine.

Für M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie (PO 2011) werden 3 ECTS Punkte angerechnet.

For M.Sc. Biochemistry and Biophysics: None.

For M.Sc. Chemie: Written exam.

Within the framework of the module examination Physical Chemistry in the M.Sc. Chemistry programme, 3 ECTS points are credited.

Zu erbringende Studienleistung

Individueller Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

Individual performance record (written answers to questions).

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen)

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Eugene Hecht: "Optik", De Gruyter

Wolfgang Zinth, Ursula Aumüller: "Optik. Lichtstrahlen – Wellen – Photonen", Oldenbourg Wissenschaftsverlag

Joseph R. Lakowicz: "Principles of Fluorescence Spectroscopy", Springer Science+Business Media
Teilnahmevoraussetzung laut Prüfungsordnung
Keine.
None.

Name des Moduls	Nummer des Moduls	
Detection and Analysis of Single Molecules and Molecular Machines 08LE05MO-PC-WF4_23		
Veranstaltung		
Cellular Self-Organization and Molecular Machines		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID030024	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Fundamental forces in nano-biosystems (elastic, viscous, thermal, chemical, entropic, polymerization); concepts of equilibrium and non-equilibrium systems and measurements; Jarzynski equation; linear and rotational molecular motors; molecular details of muscle function and phase separation; methods to measure cellular self-organization and molecular machines.

Zu erbringende Prüfungsleistung

M.Sc. Chemie (2023): Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

M.Ed. Chemie (2023): Gemeinsame mündliche Prüfung beider im Modul belegten Vorlesungen (Vorlesung 1 und Vorlesung 2).

Zu erbringende Studienleistung

Keine.

Literatur

Jonathon Howard: "Mechanics of Motor Proteins and Cytoskeleton", Sinauer Philip Nelson: "Biological Physics: Energy, Information, Life", WH Freeman

Rob Philips, Jane Kondev, Julie Theriot, Hernan Garcia: "Physical Biology of the Cell", Taylor & Francis Ltd. Recent journal publications

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Detection and Analysis of Single Molecules and Molecular Machines 08LE05MO-PC-WF4_2		
Veranstaltung		
Cellular Self-Organization and Molecular Machines		
Veranstaltungsart	Nummer	
Übung	08LE05Ü-ID030024	

ECTS-Punkte	1,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Fundamental forces in nano-biosystems (elastic, viscous, thermal, chemical, entropic, polymerization); concepts of equilibrium and non-equilibrium systems and measurements; Jarzynski equation; linear and rotational molecular motors; molecular details of muscle function and phase separation; methods to measure cellular self-organization and molecular machines.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Modulprüfung aller Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Literatur

Jonathon Howard: "Mechanics of Motor Proteins and Cytoskeleton", Sinauer Philip Nelson: "Biological Physics: Energy, Information, Life", WH Freeman

Rob Philips, Jane Kondev, Julie Theriot, Hernan Garcia: "Physical Biology of the Cell", Taylor & Francis Ltd. Recent journal publications

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Membrane Biochemistry	08LE05MO-BC-WF1_23
Verantwortliche/r	
Prof. Dr. Susana Antunes de Andrade	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Biochemistry of Lipids	Vorlesung	Wahlpflicht	4,0	2,0	120 h
Signal Transducing Cascades	Vorlesung	Wahlpflicht	1,0	1,0	30 h
Membrane Biochemistry	Vorlesung	Wahlpflicht	1,0	1,0	30 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden werden mit Fragestellungen angewandter biochemischer Forschung konfrontiert. Die Biologie und Biochemie von Membran-vermittelten Prozessen steht dabei im Mittelpunkt des Moduls. Den Studierenden wird die Vielschichtigkeit biochemischer Fragestellungen vermittelt. Nach Abschluss des Moduls sind sie in der Lage, eigene Denk- und Lösungsansätze zu erarbeiten. Die Studierenden sind in der Lage, kritisch an wissenschaftlichen Diskussionen teilnehmen, aktiv zuhören, ein konstruktives Feedback geben und relevante Fragen stellen.

Zusammensetzung der Modulnote

Die Vorlesungen des Moduls werden in einer gemeinsamen Modulprüfung abgeprüft. Die Modulnote ist die Note der mündlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Г

me des Moduls Nummer des Moduls		
Membrane Biochemistry	08LE05MO-BC-WF1_23	
Veranstaltung		
Biochemistry of Lipids		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID040017	

ECTS-Punkte	4,0
Arbeitsaufwand	120 h
Präsenzstudium	30 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Struktur und Chemie der Lipiddoppelschicht, Transport über Membranen, Signalübertragung, Biosynthese der Fettsäuren, Oxidation der Fettsäuren, Mischfunktionelle Oxidasen, Biosynthese der Membranphospholipide, Cholesterin, Steroiden und Isoprenoiden, Exocytose und Endocytose.

Structure and chemistry of the lipid bilayer, transport across membranes, signal transduction, biosynthesis of fatty acids, oxidation of fatty acids, mixed functional oxidases, biosynthesis of membrane phospholipids, cholesterol, steroids and isoprenoids, exocytosis and endocytosis.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen des Moduls.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang M.Sc. Pharmazeutische Wissenschaften wird für jede Veranstaltung jeweils 1 ECTS Punkt angerechnet. In diesem Fall werden keine weiteren ECTS-Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Keine.

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2010 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer, 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen unter http://portal.uni-freiburg/biochemie

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Membrane Biochemistry	08LE05MO-BC-WF1_23
Veranstaltung	
Signal Transducing Cascades	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID040026
Veranstalter	
Institut für Biochemie	

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	15 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Signaling molecules; agonists, antagonists; paracrinic, endocrinic, autocrinic signaling; receptor types (cell-surface and nuclear receptors): G protein-coupled receptors, ligand-gated ion channels, receptor tyrosine kinases, two-component signal transduction (histidine kinases and response regulators), intracellular receptors; signal sensing, transduction, amplification and desensitization events; effector molecules (adenylate cyclase, phospholipases, phosphodiesterases, kinases, ion channels, adenylyltransferases, diguanylate cyclase, G-proteins, Ras proteins), second messengers (cAMP, c-di-GMP, cGMP, DAG, Ca2+, IP3); vision and rhodopsin; neural synapses and neuromuscular communication: action and graded potentials; bacterial chemotaxis and phototaxis.

Zu erbringende Prüfungsleistung

Für M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen.

Teil der mündlichen Modulprüfung "Biochemistry" im Studiengang M.Sc. Biochemistry and Biophysics. Part of the oral module examination "Biochemistry" in the M.Sc. Biochemistry and Biophysics study course.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang <u>M.Sc. Chemie</u> und <u>M.Sc. Pharmazeutische Wissenschaften</u>kann 1 ECTS Punkt angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Within the framework of the module part examination Biochemistry in the degree programme <u>M.Sc. Chemistry</u> and <u>M.Sc. Pharmaceutical Sciences</u>, 1 ECTS point can be credited. In this case, no further ECTS points are credited as coursework in the module "Methods and Concepts".

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf IIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls		
Membrane Biochemistry	08LE05MO-BC-WF1_23		
Veranstaltung			
Membrane Biochemistry			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID040024		
Veranstalter			
Institut für Biochemie			

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	15 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Membrane-organism-organelle variability; Membrane composition, structure, function; Membrane assembly, fusion, fission; Membrane proteins; Artificial membrane systems. Optical, confocal and electron microscopy (SEM, TEM, Cryo-EM, Freeze-fracture, Tomography); Fluorescence Microscopy; FRET, Förster resonance energy transfer; FRAP, Fluorescence recovery after photobleaching; AFM, Atomic force microscopy; Detergents in membrane protein extraction and purification; CD, Circular dichroism; Dynamic Light scattering; X-ray crystallography; SAXS, Small angle X-ray scattering; (Proteo)liposomes; Electrophysiology techniques: Planar lipid bilayer, Patch clamp; 2-electrode voltage clamp; Solid supported membrane-based electrophysiology; CIC channels; Electron paramagnetic resonance; Site-directed spin labeling.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen des Moduls.

Möglicher Teil der mündlichen Modulprüfung "Biochemistry" im Studiengang <u>M.Sc. Biochemistry and Biophysics.</u>

Possible part of the oral module examination "Biochemistry" in the M.Sc. Biochemistry and Biophysics study course.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang <u>M.Sc. Chemie</u> und <u>M.Sc. Pharmazeutische Wissenschaften</u> kann 1 ECTS Punkt angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Within the framework of the module part examination Biochemistry in the degree programme <u>M.Sc. Chemistry</u> and <u>M.Sc. Pharmaceutical Sciences</u>, 1 ECTS point can be credited. In this case, no further ECTS points are credited as coursework in the module "Methods and Concepts".

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls
Advanced Biochemistry	08LE05MO-BC-WF2_23
Verantwortliche/r	
Prof. Dr. Thorsten Friedrich	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Biochemistry	Vorlesung	Wahlpflicht	6,0	4,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden werden mit Fragestellungen angewandter biochemischer Forschung konfrontiert. Die gesamte Breite der Biochemie unter Einbeziehung aktueller Themen steht im Mittelpunkt des Moduls. Den Studierenden wird die Vielschichtigkeit biochemischer Fragestellungen und Lösungsansätzen vermittelt. Nach Abschluss des Moduls sind sie in der Lage, eigene Denk- und Lösungsansätze zu erarbeiten. Die Studierenden sind in der Lage, kritisch an wissenschaftlichen Diskussionen teilnehmen, aktiv zuhören, ein konstruktives Feedback geben und relevante Fragen stellen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung über die Vorlesung des Moduls.

Verwendbarkeit des Moduls

M. Sc. Chemie

Г

Name des Moduls	Nummer des Moduls		
Advanced Biochemistry	08LE05MO-BC-WF2_23		
Veranstaltung			
Advanced Biochemistry			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID040022		
Veranstalter			
Institut für Biochemie			

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	90 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Chemistry of amino acids and peptides, chemical and biological synthesis of peptides and proteins, protein folding and post-translational modification, protein targeting; (stereo-)chemistry of sugars, sugar polymers, peptidoglycane, glycosamine glycans, glycoconjugates; chemistry of nucleic acids, structure and physic-chemical properties of DNA, DNA topology, replication, transcription; structure and function of lipids; biosynthesis of membrane components; assembly and structure of the membrane, membrane proteins; membrane transport, membrane dynamics; biosynthesis and degradation of amino acids, urea cycle, alanine-glucose cycle, regulation of amino acid biosynthesis, structure and function of protein cofactors; sugar metabolism, biosynthesis of sugars, pentose phosphate pathway, human evolution, gluconeogenesis, regulation of sugar metabolism, glycogen synthesis; RNA metabolism, gene expression and translation in prokaryotes and eukaryotes, regulation of gene expression, RNA processing.

Zu erbringende Prüfungsleistung

Abschließende mündliche Prüfung über den Inhalt der Vorlesung.

Teil der mündlichen Modulprüfung "Biochemistry" im Studiengang M.Sc. Biochemistry and Biophysics.

Part of the oral module examination "Biochemistry" in the M.Sc. Biochemistry and Biophysics study course.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang <u>M.Sc. Chemie</u> und <u>M.Sc. Pharmazeutische</u> <u>Wissenschaften</u> können 2 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Within the framework of the module part examination Biochemistry in the degree programme M.Sc. Chemistry and M.Sc. Pharmaceutical Sciences, 2 ECTS points can be credited. In this case, no further ECTS points are credited as coursework in the module "Methods and Concepts".

Zu erbringende Studienleistung

Für Methoden und Konzepte: 2 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

For methods and concepts: 2 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls
Proteins	08LE05MO-BC-WF3_23
Verantwortliche/r	
Prof. Dr. Oliver Einsle	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Molecular Enzymology	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Structural Biology	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden werden mit Fragestellungen angewandter biochemischer Forschung konfrontiert. Die Struktur und die Funktion von Enzymen stehen im Mittelpunkt des Moduls. Den Studierenden wird die Vielschichtigkeit biochemischer Fragestellungen und Lösungsansätzen vermittelt. Nach Abschluss des Moduls sind sie in der Lage, eigene Denk- und Lösungsansätze zu erarbeiten. Die Studierenden sind in der Lage, kritisch an wissenschaftlichen Diskussionen teilnehmen, aktiv zuhören, ein konstruktives Feedback geben und relevante Fragen stellen.

Zusammensetzung der Modulnote

Die Vorlesungen des Moduls werden in einer gemeinsamen Modulprüfung abgeprüft. Die Modulnote ist die Note der mündlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

г

Name des Moduls	Nummer des Moduls		
Proteins	08LE05MO-BC-WF3_23		
Veranstaltung			
Molecular Enzymology			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID040023		
Veranstalter			
Institut für Biochemie			

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Enzyme classification; enzyme specificity; active site characteristics; mechanistic models for enzyme catalysis: the lock-and-key, induced fit and strain or transition state stabilization models; kinetic and bioenergetic concepts of enzyme catalysis; activation energy, collision theory, order and molecularity of a reaction, reaction rate, rate constant, equilibrium constant, initial velocity; Henri and Michaelis-Menten equation; Briggs-Haldane equation; KM, Vm, Kcat; Lineweaver-Burk plot; Eady-Hofstee and Hanes plot; Eisenthal and Cornish-Bowden plot; Haldane relationship for reversible reactions; rapid, pre-steady state and relaxation kinetics; King and Haldane concept; reversible and irreversible enzyme inhibition; competitive, uncompetitive, non-competitive, mixed, partial, substrate, allosteric and irreversible inhibition models; kinetics of single- and multi-substrate enzyme reactions: ping-pong bi-bi mechanism.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen des Moduls.

Teil der mündlichen Modulprüfung "Biochemistry" im Studiengang M.Sc. Biochemistry and Biophysics. Part of the oral module examination "Biochemistry" in the M.Sc. Biochemistry and Biophysics study course.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang $\underline{\text{M.Sc. Chemie}}$ können 2 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Within the framework of the module part examination Biochemistry in the degree programme M.Sc. Chemistry, 2 ECTS points can be credited. In this case, no further ECTS points are credited as coursework in the module "Methods and Concepts".

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls
Proteins	08LE05MO-BC-WF3_23
Veranstaltung	
Structural Biology	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID040025
Veranstalter	
Institut für Biochemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Kristallwachstum, Kristallsymmetrie, Röntgenstrahlen, Beugung, Strukturfaktoren, Elektronendichtekarten, Phasenproblem, anomale Streuung, Methoden der Strukturlösung von Proteinen; Modellbau und Verfeinerung; Qualität und Validierung von Strukturen.

Crystal growth, crystal symmetry, X-rays, diffraction, structure factors, electron density maps, phase problem, anomalous scattering, protein structure solution methods; model building and refinement; quality and validation of structures.

Zu erbringende Prüfungsleistung

Für M.Sc. Chemie gilt: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen.

M.S. Biochemistry and Biophysics gilt: Keine.

Im Rahmen der Modulteilprüfung Physikalische Chemie im Studiengang M.Sc. Chemie werden 3 ECTS Punkte angerechnet.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang M.Sc. Pharmazeutische Wissenschaften wird für jede Veranstaltung jeweils 1 ECTS Punkt angerechnet. In diesem Fall werden keine weiteren ECTS-Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

For M.Sc. Chemie: Oral exam

M.S. Biochemistry and Biophysics: None.

Within the framework of the module examination Physical Chemistry in the M.Sc. Chemistry programme, 3 ECTS points are credited.

As part of the partial module examination in Biochemistry in the M.Sc. Pharmaceutical Sciences programme, 1 ECTS point is credited for each course. In this case, no further ECTS credits will be recognised as coursework in the "Methods and Concepts" module.

Zu erbringende Studienleistung

Individueller Leistungsnachweis (Schriftliche Beantwortung von Fragen).

Individual performance record (written answers to questions).

Für Methoden und Konzepte: 1 ECTS für individueller Leistungsnachweis (Schriftliche Beantwortung von Fragen).

For the module "methods and concepts": 1 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu der Veranstaltung auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

None.

Name des Moduls	Nummer des Moduls
Bioinorganic Chemistry	08LE05MO-BC-WF4_23
Verantwortliche/r	
Prof. Dr. Thorsten Friedrich	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Metals in Biology I	Vorlesung	Wahlpflicht	1,0	1,0	45 h
Prokaryotes	Vorlesung	Wahlpflicht	2,0	1,0	45 h
Metals in Biology II	Vorlesung	Wahlpflicht	1,0	1,0	45 h
Bioinorganic Chemistry: Mechanisms, Model Compounds and Applications	Praktikum	Wahlpflicht	2,0	1,0	45 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden werden mit Fragestellungen angewandter biochemischer Forschung konfrontiert. Die anorganischen Kofaktoren von Enzymen, deren chemische Bindung, Nachweis sowie Vorkommen stehen im Mittelpunkt des Moduls. Den Studierenden wird die Vielschichtigkeit biochemischer Fragestellungen vermittelt. Nach Abschluss des Moduls sind sie in der Lage, eigene Denk- und Lösungsansätze zu erarbeiten. Die Studierenden sind in der Lage, kritisch an wissenschaftlichen Diskussionen teilnehmen, aktiv zuhören, ein konstruktives Feedback geben und relevante Fragen stellen.

Zusammensetzung der Modulnote

Die Vorlesungen des Moduls werden in einer gemeinsamen Modulprüfung abgeprüft.

Die Modulnote setzt sich aus der Note der mündlichen Prüfung über die Vorlesungen (80%) und der Note des Praktikums (20%) zusammen.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls
Bioinorganic Chemistry	08LE05MO-BC-WF4_23
Veranstaltung	
Metals in Biology I	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID040028
Veranstalter	
Institut für Biochemie	

ECTS-Punkte	1,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Biological metal clusters; principles of bioinorganic chemistry; iron, copper, molybdenum and nickel in biological systems; spectroscopic methods; important metalloproteins; reaction sites and mechanisms of metalloenzymes.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen..

Teil der mündlichen Modulprüfung "Biochemistry" im Studiengang M.Sc. Biochemistry and Biophysics. Part of the oral module examination "Biochemistry" in the M.Sc. Biochemistry and Biophysicsstudy course.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang M.Sc. Chemie und M.Sc. Pharmazeutische Wissenschaften kann 1 ECTS Punkt angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Within the framework of the module part examination Biochemistry in the degree programme $\underline{\text{M.Sc. Che-mistry}}$ and $\underline{\text{M.Sc. Pharmaceutical Sciences}}$, 1 ECTS point can be credited. In this case, no further ECTS points are credited as coursework in the module "Methods and Concepts".

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen)

For methods and concepts: 1 ECTS for individual performance record (written answers to questions).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf IIAS.
Teilnahmevoraussetzung laut Prüfungsordnung
Keine.
None.

Name des Moduls	Nummer des Moduls	
Bioinorganic Chemistry	08LE05MO-BC-WF4_23	
Veranstaltung		
Prokaryotes		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID040016	

ECTS-Punkte	2,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Definitions: Pro-/Eukaryotes; evolution: Darwin / ID, phylogenetic trees, gene transfer; quantitative evolution: bioinformatics, homology; classification of prokaryotes, life styles, archaea; energy metabolism: the way ATP works, electron bifurcation, sugar metabolism and general catabolic pathways in pro-/eukaryotes, diversity of electron transport pathways (redox chemistry), the multitude of bacterial respiratory chains; acetogenesis, methanogenesis, coenzymes of methanogens, fermentations: principle and examples; syntrophy; selected features of prokaryotic biochemistry.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Abschließende mündliche Prüfung über den Inhalt der Vorlesungen.

Im Rahmen der Modulteilprüfung Biochemie im Studiengang M.Sc. Pharmazeutische Wissenschaften wird für jede Veranstaltung jeweils 1 ECTS Punkt angerechnet. In diesem Fall werden keine weiteren ECTS-Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2010 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer, 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen unter http://portal.uni-freiburg/biochemie

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Bioinorganic Chemistry	08LE05MO-BC-WF4_23	
Veranstaltung		
Metals in Biology II		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID040423	

ECTS-Punkte	1,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Biological metal clusters; principles of bioinorganic chemistry; iron, copper, molybdenum and nickel in biological systems; spectroscopic methods; important metalloproteins; reaction sites and mechanisms of metalloenzymes.

Zu erbringende Prüfungsleistung

Abschließende mündliche Prüfung über den Inhalt der Vorlesungen.

Zu erbringende Studienleistung

Für Methoden und Konzepte: 1 ECTS für individuellen Leistungsnachweis (Schriftliche Bearbeitung von Fragen).

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009 Berg, Tymoczko, Stryer: Stryer Biochemie, Springer 2019

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Bioinorganic Chemistry 08LE05MO-BC-WF4_		
Veranstaltung		
Bioinorganic Chemistry: Mechanisms, Model Compounds and Applications		
Veranstaltungsart	Nummer	
Praktikum	08LE05V-ID010042	

ECTS-Punkte	2,0
Arbeitsaufwand	45 h
Präsenzstudium	15 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Bioinorganic Chemistry - Reaction Mechanisms and Model Compounds

Metal centres: bioavailability, Pourbaix diagrams, ligand exchange, complex stabilities; ligands: amino acids, nucleobases, porphyrin systems; design principles for synthetic model compounds; transport, storage and signalling proteins: ferrichrome, ferritin, hemoglobin, calmodulin, zinc finger; proteins for electron transfer: cytochromes, Fe/S-Cluster, type I copper proteins; metalloenzymes: hydrogenase, P450, sulphite oxidase, Zn-peptidase, tyrosinase, catalase, vitamin B12; interaction of metal ions with DNA / RNA; pharmaceutical applications of synthetic coordination compounds: cis-platin, 99mTc-based radiopharmaceuticals, Gd-MRI contrast agents, 18F for PET; principles and model systems for the biomineralization of CaCO3, SiO2 and Ca5[(PO4)3(OH)]

Zu erbringende Prüfungsleistung

Abschließende mündliche Prüfung über den Inhalt der Vorlesungen.

Zu erbringende Studienleistung

Vorlesungen ohne verpflichtende Teilnahme.

Literatur

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen auf ILIAS.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Advanced Macromolecular Chemistry	08LE05MO-MC-WF1_23
Verantwortliche/r	
Prof. Dr. Laura Hartmann Dr. Stephan Schmidt	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Synthesis	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Physical Chemistry of Polymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

In Einzelveranstaltungen und zu den ausgewählten Themen der Vorlesungen vertiefen die Studierenden, aufbauend auf den Grundlagen der Chemie, Physik und Technologie von Makromolekülen, ihre Kenntnisse und Fertigkeiten im Bereich der Polymer- und Materialwissenschaften. Die Studierenden können zu den ausgewählten Themenbereichen der Vorlesungen zur modernen makromolekularen Chemie kritisch Stellung nehmen.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen schriftlichen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls	
Advanced Macromolecular Chemistry 08LE05MO-MC-WF1_		
Veranstaltung		
Advanced Synthesis		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050016	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture will introduce modern and advanced methods of polymer synthesis as well as classes of polymers and polymeric materials. As synthetic methods, controlled radical polymerizations, catalytic polymerizations employing single site catalysts, electrochemical polymerizations and ring-closing polymerizations are introduced. In terms of advanced classes of polymers and materials, complex copolymer architectures, ladder polymers, conducting polymers, light-emitting polymers, sequence-controlled polymers and polymer networks are discussed. Applications of such modern polymers and materials will be introduced for selected examples.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Advanced Macromolecular Chemistry 08LE05MO-MC-WF1_2	
Veranstaltung	
Physical Chemistry of Polymers	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050018
Veranstalter	
Institut für Makromolekulare Chemie	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture explores the physical and chemical properties of polymers for a comprehensive understanding of polymer structure, molecular weight, chain conformation, and morphology. Students will explore the thermodynamics and statistical mechanics of polymer solutions, blends, and melts, learning about key concepts such as polymer solubility, phase behavior, glassy- and crystalline states. The lecture also links the physical properties of polymer materials to characterization techniques, including spectroscopic methods, thermal analysis, and rheology, allowing students to analyze and interpret experimental data. Additionally, the physical behavior of polymers with different architecture and copolymers, i.e. links to the synthesis of polymers, is examined in detail. They learn about polymer chain dynamics, viscoelasticity, and the implication for polymerization reactions. Through this lecture, students gain a solid foundation in the physical chemistry and physics of polymers, enabling them to analyze and design polymer materials with tailored properties for specific applications in fields such as materials science, nanotechnology, and biotechnology.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Polymer Materials – Synthesis and Applications 08LE05MO-MC-WF2_2		
Verantwortliche/r		
Dr. Stephan Schmidt		
Fachbereich / Fakultät		
Fakultät für Chemie und Pharmazie		

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Soft Matter	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Responsive and Adaptive Materials	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

In Einzelveranstaltungen und zu den ausgewählten Themen der Vorlesungen vertiefen die Studierenden, aufbauend auf den Grundlagen der Chemie, Physik und Technologie von Makromolekülen, ihre Kenntnisse und Fertigkeiten im Bereich der Polymer- und Materialwissenschaften. Die Studierenden können zu den ausgewählten Themenbereichen der Vorlesungen zur modernen makromolekularen Chemie kritisch Stellung nehmen.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen schriftlichen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Г

Name des Moduls	Nummer des Moduls		
Polymer Materials – Synthesis and Applications	08LE05MO-MC-WF2_23		
Veranstaltung			
Soft Matter			
Veranstaltungsart Nummer			
Vorlesung	08LE05V-ID050427		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture introduces students to materials that exhibit properties between those of solids and liquids, including polymers, colloids, gels, liquid crystals, and biological macromolecules. This lecture delves into the fundamental concepts, characteristics, the synthesis, characterization methods and applications of these systems. The lecture begins with an overview of soft matter, emphasizing its relevance in chemistry and materials science. Students learn about the classification of soft matter systems and explore the unique structures and properties associated with each type. The physicochemical background, and selected aspects of polymer science for their synthesis is a central focus, covering topics such as particle synthesis, controlling size- and dispersity, and polymer architectures. The lecture also addresses, colloidal stability, particle-surface interactions, and characterization techniques. Phase separation phenomena and liquid crystals, known for their special phases and applications, are explored in detail. Gels and soft networks are examined, with emphasis on gel formation mechanisms, mechanical behavior, and real-world applications. Furthermore, the lecture introduces students to the world of biological macromolecules, their structure, function, and significance in soft matter systems. Here self-assembly, phase transitions, and the practical applications of soft matter complete the curriculum. Overall, this lecture equips students with a comprehensive understanding of soft matter and its broad applications, preparing them to engage with future projects in research and industry.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Polymer Materials – Synthesis and Applications	08LE05MO-MC-WF2_23	
Veranstaltung		
Responsive and Adaptive Materials		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050428	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture introduces students to the world of materials that can actively respond and adapt to external stimuli. These materials possess unique properties that can be controlled and manipulated, making them highly desirable in various applications. The students explore the fundamental principles underlying responsive and adaptive materials such as the types of stimuli, like temperature, light, pH, electric fields, and mechanical forces, and how these stimuli can induce changes in material properties. The lecture covers various classes of responsive materials, including shape-memory polymers, self-healing materials, stimuli-responsive hydrogels, and photonic crystals. Students gain insights into the synthesis, characterization, and applications of these materials. Being centered in field of chemistry, the lecture delves into the synthetic aspects and design principles and mechanisms behind the responsiveness of these materials. Students learn about molecular-level interactions, reversible chemical reactions, and structural rearrangements that enable these materials to exhibit unique properties and functionalities. Through case studies and discussions of recent literature examples, students gain a deep understanding of the potential applications of responsive and adaptive materials in fields such as drug delivery, sensors, and actuators. This lecture equips students with the knowledge and tools to contribute to the development of advanced materials that can dynamically respond and adapt to their environment.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Sequence-controlled polymers in Nature and technology	08LE05MO-MC-WF3_23	
Verantwortliche/r		
Prof. Dr. Laura Hartmann		
Fachbereich / Fakultät		
Fakultät für Chemie und Pharmazie		

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Sequence-controlled polymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Glycopolymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

In Einzelveranstaltungen und zu den ausgewählten Themen der Vorlesungen vertiefen die Studierenden, aufbauend auf den Grundlagen der Chemie, Physik und Technologie von Makromolekülen, ihre Kenntnisse und Fertigkeiten im Bereich der Polymer- und Materialwissenschaften. Die Studierenden können zu den ausgewählten Themenbereichen der Vorlesungen zur modernen makromolekularen Chemie kritisch Stellung nehmen.

Zusammensetzung der Modulnote

Die Lehrveranstaltungen des Moduls werden in einer gemeinsamen schriftlichen Modulprüfung geprüft. Die Note des Moduls ist die Note der schriftlichen Modulprüfung.

Verwendbarkeit des Moduls

M.Sc. Chemie

M. Sc. Sust. Mat. - Polymer Science

Name des Moduls	Nummer des Moduls	
Sequence-controlled polymers in Nature and technology	08LE05MO-MC-WF3_23	
Veranstaltung		
Sequence-controlled polymers		
Veranstaltungsart Nummer		
Vorlesung	08LE05V-ID050429	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Sequence-control in polymers is introduced as concept for both, biological and synthetic polymers, highlighting important parallels as well as differences and different types of sequence-control that can be achieved. Synthetic methodology to obtain sequence-control in polymers is discussed in detail for solid phase synthesis, controlled radical polymerizations and other, specifically developed protocols. Areas of application for sequence-controlled polymers are highlighted using selected examples from literature. Since the field of sequence-controlled polymers is still a young area of research, this lecture will use current researchers from this area to also highlight different aspects of diversity such as gender, race and disability by putting the people behind the research in the focus alongside their contribution to the topic.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls	
Sequence-controlled polymers in Nature and technology	08LE05MO-MC-WF3_23	
Veranstaltung		
Glycopolymers		
Veranstaltungsart Nummer		
Vorlesung	08LE05V-ID050430	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture will introduce glycopolymers as important class of polymeric mimetics of natural sugars. First the natural sugars in the structures and functions from the point-of-view of a polymer chemist are introduced. Next, concepts to mimic these structures from different scaffolds are explored, including details on different glycoconjugation methods. Multivalency as concept, methods to systematically study multivalency effects and its relevance for applications especially in biomedicine are discussed including examples for the development of vaccines, antivirals, anti-tumor therapeutics or wound healing agents.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Name des Moduls	Nummer des Moduls
Sustainability and Biomaterials	08LE05MO-MC-WF5_23
Verantwortliche/r	
Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	2 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	jedes Studienjahr

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Circular Economy	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Materials in Life Sciences	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Students will become proficient in several aspect of biomaterials and their use in medical applications and will be capable of addressing real-world problems in the areas of drug delivery, surface engineering, tissue engineering, functional biomaterials which is highly relevant for the biotech and pharmaceutical industry. Furthermore, by combing the knowledge gained in the areas of processing of polymers, chemical structure-property-function relationships in biomaterials, and environmental impact of polymers, the students will gain competence to contribute to solutions for circular and sustainable use of polymers in health technologies and beyond.

Zusammensetzung der Modulnote

The grade of the module is the grade of the oral examination.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Verwendbarkeit des Moduls

M.Sc. Chemie

M.Sc. Sustainable Materials

Name des Moduls	Nummer des Moduls
Sustainability and Biomaterials 08LE05MO-MC-WF5_23	
Veranstaltung	
Circular Economy	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050433

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers concept and paradigms of circular economy, sustainability paradigms, sustainability consideration in materials (synthetic and natural materials) vis-à-vis their use space (building and architecture materials, consumer products, automotive industry, biomedical), regulatory framework, paradigms for incorporating sustainability and reduced carbon foot print.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

M.Ed. Chemie (2023): Joint oral examination on both selected lectures (Vorlesung 1 and Vorlesung 2).

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture slides provided on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or civil engineering

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Name des Moduls Nummer des Moduls	
Sustainability and Biomaterials	08LE05MO-MC-WF5_23
Veranstaltung	
Materials in Life Sciences	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050013

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers various aspects of modern biomaterial science. Topics include matrix for identifying materials (organic/inorganic, synthetic, biological) for biomedical applications (labware, investigative research, human), drug delivery (controlled, targeted, gene delivery, cancer therapeutics, nanomedicines), tissue engineering, biofunctional macromolecular chemistry, polymer processing for biomedical applications, soft matter (hydrogels), self-assembly, biomimetics and bioinspired systems in medical technologies, and selected applications of functional polymers in life sciences.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or pharmaceutical technology or polymer physics or biophysics.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Г

Name des Moduls	Nummer des Moduls
Biomaterials	08LE05MO-MC-WF6_23
Verantwortliche/r	
Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Materials in Life Sciences	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Methods and Techniques in Biomaterial Science	Vorlesung	Wahlpflicht	3,0	3,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Students will become proficient in several aspect of biomaterials and their use in medical applications, characterization of polymers and medical device surface and bulk properties and bioanalytical techniques and using this knowledge they will be capable of addressing real-world problems in the areas of drug delivery, surface engineering, tissue engineering, functional biomaterials which is highly relevant for the biotech and pharmaceutical industry. Furthermore, by combing the knowledge gained in the areas of processing of polymers, chemical structure-property-function relationships in biomaterials, and environmental impact of polymers, the students will gain competence to contribute to solutions for circular and sustainable use of polymers in health technologies and beyond.

Zusammensetzung der Modulnote

The grade of the module is the grade of the oral examination.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Verwendbarkeit des Moduls

M.Sc. Chemie

M.Sc. Sustainable Materials

Name des Moduls	Nummer des Moduls		
Biomaterials	08LE05MO-MC-WF6_23		
Veranstaltung			
Materials in Life Sciences			
Veranstaltungsart	Nummer		
Vorlesung	08LE05V-ID050013		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers various aspects of modern biomaterial science. Topics include matrix for identifying materials (organic/inorganic, synthetic, biological) for biomedical applications (labware, investigative research, human), drug delivery (controlled, targeted, gene delivery, cancer therapeutics, nanomedicines), tissue engineering, biofunctional macromolecular chemistry, polymer processing for biomedical applications, soft matter (hydrogels), self-assembly, biomimetics and bioinspired systems in medical technologies, and selected applications of functional polymers in life sciences.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or pharmaceutical technology or polymer physics or biophysics.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Г

Name des Moduls Nummer des Moduls			
Biomaterials 08LE05MO-MC-WF6_2			
Veranstaltung			
Methods and Techniques in Biomaterial Science			
Veranstaltungsart Nummer			
Vorlesung	08LE05V-ID050421		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	40 h
Selbststudium	50 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The course will cover techniques for the surface and bulk characterization of materials with an emphasis on biomedical applications, bioanalytical techniques routinely used in research at the interface of materials and life sciences and relate it to current research topics in biomaterial sciences. Short lab demonstrations of key techniques.

Zu erbringende Prüfungsleistung

graded presentation, and graded term paper

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Attendance according to §13 (2) Rahmenprüfungsordnung Master of Science Chemie, participation and presentation

Literatur

Lecture notes and reading material (scientific literature) will be provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or civil engineering or pharmaceutical technology or polymer physics or biophysics

Bemerkung / Empfehlung

LIMITED ENROLLMENT 10-15 students maximum

Priority will be given to students enrolled in "Biomaterials and Biosystems" (S3 module) in the study program M.Sc. Sustainable Materials - Polymer Science.

Name des Moduls	Nummer des Moduls
Polymer Processing for Healthcare Technologies	08LE05MO-MC-WF7_23
Verantwortliche/r	
Dr. Aurelien Forget Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Materials in Life Sciences	Vorlesung	Wahlpflicht	3,0	2,0	90 h
3D-Printing and Biofabrication	Vorlesung	Wahlpflicht	3,0	2,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Students will become proficient in several aspects of biomaterials and their use in medical technologies. Through knowledge gained in the area of processing of polymers into fibers, porous structures, and membranes and hydrogels using state of the art approaches in free form fabrication, in particular 3D-printing, students will be capable of addressing real-world problems in the areas of regenerative medicine, engineering of model tissues and organoids for drug screening, drug delivery, active soft materials, and stimuli responsive materials which is highly relevant for lab research in the frontier of life technologies and the biotech and pharmaceutical industry.

Zusammensetzung der Modulnote

The grade of the module is the grade of the oral examination.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Verwendbarkeit des Moduls

M.Sc. Chemie

M.Sc. Sustainable Materials

Name des Moduls Nummer des Modul			
Polymer Processing for Healthcare Technologies 08LE05MO-MC-WF7_23			
Veranstaltung			
Materials in Life Sciences			
Veranstaltungsart Nummer			
Vorlesung	08LE05V-ID050013		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers various aspects of modern biomaterial science. Topics include matrix for identifying materials (organic/inorganic, synthetic, biological) for biomedical applications (labware, investigative research, human), drug delivery (controlled, targeted, gene delivery, cancer therapeutics, nanomedicines), tissue engineering, biofunctional macromolecular chemistry, polymer processing for biomedical applications, soft matter (hydrogels), self-assembly, biomimetics and bioinspired systems in medical technologies, and selected applications of functional polymers in life sciences.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or pharmaceutical technology or polymer physics or biophysics.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Г

Name des Moduls	Nummer des Moduls	
Polymer Processing for Healthcare Technologies	08LE05MO-MC-WF7_23	
Veranstaltung		
3D-Printing and Biofabrication		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050003	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

This seminar-type will cover the processing of biomaterials (thermoplastics and hydrogels) in various biomedical application-based scenarios, with a special emphasis on free form fabrication (FFF) approaches such as 3D-printing. Additionally, the integration of high throughput (HT) concepts with FFF towards biofabrication of tissues and tissue model (organoids) will be covered. Lab tutorials on most common 3D-Printing technologies.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes will be provided in class and available on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

None.

Bemerkung / Empfehlung

LIMITED ENROLLMENT 10-15 students maximum

Priority will be given to students enrolled in "Biomaterials and Biosystems" (S3 module) in the study program M.Sc. Sustainable Materials - Polymer Science.

Active participation in all sessions are strongly recommended to all students.

Name des Kontos	Nummer des Kontos
Wahlfach 3	08LE05KT-WF3
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Kommentar

Das Wahlfach 3 wird im Gegensatz zu den Wahlfächern 1 und 2 mit einer Studienleistung abgeschlossen. Die belegbaren Module werden nachfolgend aufgelistet, die se Liste wird fortlaufend ergänzt.

Г

Name des Moduls	Nummer des Moduls
Quantenchemische Rechenmethoden	08LE05MO-AC-WF1_23_SL
Verantwortliche/r	
Prof. Dr. Thorsten Koslowski Prof. Dr. Ingo Krossing Prof. DrIng. Caroline Röhr	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	1
Moduldauer	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Quantenchemische Rechenmethoden	Vorlesung mit Übung			3,0	90 h
Selbstständige Projektarbeit, Präsentation	Praktikum	Wahlpflicht	3,0	2,0	90 h

Inhalte

Die Studierenden kennen die Grundlagen quantenchemischer Rechenmethoden und haben deren Anwendung zu Berechnungen von molekularen und periodischen Systemen verstanden. Sie wenden diese Berechnungen in einer Projektarbeit eigenständig zur Lösung von chemischen Problemstellungen an und stellen die Lösungen vor.

Lern- und Qualifikationsziele der Lehrveranstaltung

Zusammensetzung der Modulnote

Die Bewertung des Moduls erfolgt in Form einer benoteten Studienleistung auf Basis der Präsentation der Projektarbeit (SLN).

Verwendbarkeit des Moduls

M.Sc. Chemie

П

Name des Moduls	Nummer des Moduls	
Quantenchemische Rechenmethoden	08LE05MO-AC-WF1_23_SL	
Veranstaltung		
Quantenchemische Rechenmethoden		
Veranstaltungsart	Nummer	
Vorlesung mit Übung	08LE05V-ID010334	

ECTS-Punkte	
Arbeitsaufwand	90 h
Präsenzstudium	45 h
Selbststudium	45 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

Der "Große QM-Kurs" für alle, die QM-Methoden sowohl von theoretischer Sicht (T. Koslowski) bis zur Anwendung auf molekulare (I. Krossing) und feste Systeme (C. Röhr) erlernen möchten. In diesem Kurs werden wir die Grundlagen quantenchemischer Rechenmethoden erarbeiten (3 Termine) und auf Rechnungen molekularer Systeme (5 Termine) und dreidimensional-periodischer Festkörper (5 Termine) anwenden. Neben der ausführlichen Besprechung der physikalisch-chemischen und mathematischen Grundlagen stehen Übungen und Anwendungen entsprechender Programmsysteme auf dem Kursprogramm. In der begleitenden Übung enthalten ist eine kurze Einführung in das Betriebssystem Unix/Linux.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

mündliche Präsentation (Kolloquien)

Literatur

Alle Unterlagen stehen auf ILIAS zur Verfügung, eine erste Orientierung liefert die Website von Frau Röhr unter: http://ruby.chemie.uni-freiburg.de/Vorlesung/m+k_theorie.html

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Quantenchemische Rechenmethoden	08LE05MO-AC-WF1_23_SL	
Veranstaltung		
Selbstständige Projektarbeit, Präsentation		
Veranstaltungsart	Nummer	
Praktikum	08LE05P-ID010334	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Nach der Vorlesung Quantenchemische Rechenmethoden und den Übungen zur Anwendungen der Methoden, werden Themen für selbstständige Projektarbeiten ausgegeben, die typischerweise von einer promovierenden Person betreut werden und aktuelle wissenschaftliche Fragestellungen beinhalten, die mit quantenchemischen Rechenmethoden beantwortet werden können.

Die Studierenden wählen ein Thema aus und bearbeiten dies unter Anleitung selbständig und stellen die Ergebnisse der Projektarbeit in einer Präsentation den Kursmitgliedern vor und verteidigen die Ergebnisse in der Diskussion.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

mündliche Präsentationen (Kolloquien)

Literatur

Alle Unterlagen stehen auf ILIAS zur Verfügung, eine erste Orientierung liefert die Website von Frau Röhr unter: http://ruby.chemie.uni-freiburg.de/Vorlesung/m+k_theorie.html

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Verantwortliche/r	
Dr. Ralf Hanselmann Prof. Dr. Laura Hartmann Dr. Stephan Schmidt Prof. Dr. Venkatram Prasad Shastri	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Synthesis	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Physical Chemistry of Polymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Soft Matter	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Responsive and Adaptive Materials	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Sequence-controlled polymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Glycopolymers	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Circular Economy	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Materials in Life Sciences	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Methods and Techniques in Biomaterial Science	Vorlesung	Wahlpflicht	3,0	3,0	90 h
3D-Printing and Biofabrication	Vorlesung	Wahlpflicht	3,0	2,0	90 h
Forschungspraktikum	Praktikum	Wahlpflicht	6,0	4,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

One lecture from the list above (course descriptions see "Wahlfch 1 oder 2" above) has to be chosen to gain insights into current topics of polymer and material research. In the lab work, hands-on experience in current

topics of polymer synthesis and characterization will be provided by participating in the research work at the Institute for Macromolecular Chemistry.

Zusammensetzung der Modulnote

Schriftliche Ausarbeitung, mündliche Präsentation und praktische Leistung.

Bemerkung / Empfehlung

Bei der Wahl der Vorlesung sind Vorlesungen ausgeschlossen, die bereits in Wahlfach 1 oder 2 belegt wurden.

Verwendbarkeit des Moduls

M.Sc. Chemie

M. Sc. Sust. Mat. - Polymer Science

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Advanced Synthesis		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050016	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture will introduce modern and advanced methods of polymer synthesis as well as classes of polymers and polymeric materials. As synthetic methods, controlled radical polymerizations, catalytic polymerizations employing single site catalysts, electrochemical polymerizations and ring-closing polymerizations are introduced. In terms of advanced classes of polymers and materials, complex copolymer architectures, ladder polymers, conducting polymers, light-emitting polymers, sequence-controlled polymers and polymer networks are discussed. Applications of such modern polymers and materials will be introduced for selected examples.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

П

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Physical Chemistry of Polymers		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050018	
Veranstalter		
Institut für Makromolekulare Chemie		

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture explores the physical and chemical properties of polymers for a comprehensive understanding of polymer structure, molecular weight, chain conformation, and morphology. Students will explore the thermodynamics and statistical mechanics of polymer solutions, blends, and melts, learning about key concepts such as polymer solubility, phase behavior, glassy- and crystalline states. The lecture also links the physical properties of polymer materials to characterization techniques, including spectroscopic methods, thermal analysis, and rheology, allowing students to analyze and interpret experimental data. Additionally, the physical behavior of polymers with different architecture and copolymers, i.e. links to the synthesis of polymers, is examined in detail. They learn about polymer chain dynamics, viscoelasticity, and the implication for polymerization reactions. Through this lecture, students gain a solid foundation in the physical chemistry and physics of polymers, enabling them to analyze and design polymer materials with tailored properties for specific applications in fields such as materials science, nanotechnology, and biotechnology.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Soft Matter		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050427	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture introduces students to materials that exhibit properties between those of solids and liquids, including polymers, colloids, gels, liquid crystals, and biological macromolecules. This lecture delves into the fundamental concepts, characteristics, the synthesis, characterization methods and applications of these systems. The lecture begins with an overview of soft matter, emphasizing its relevance in chemistry and materials science. Students learn about the classification of soft matter systems and explore the unique structures and properties associated with each type. The physicochemical background, and selected aspects of polymer science for their synthesis is a central focus, covering topics such as particle synthesis, controlling size- and dispersity, and polymer architectures. The lecture also addresses, colloidal stability, particle-surface interactions, and characterization techniques. Phase separation phenomena and liquid crystals, known for their special phases and applications, are explored in detail. Gels and soft networks are examined, with emphasis on gel formation mechanisms, mechanical behavior, and real-world applications. Furthermore, the lecture introduces students to the world of biological macromolecules, their structure, function, and significance in soft matter systems. Here self-assembly, phase transitions, and the practical applications of soft matter complete the curriculum. Overall, this lecture equips students with a comprehensive understanding of soft matter and its broad applications, preparing them to engage with future projects in research and industry.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Responsive and Adaptive Materials		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050428	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture introduces students to the world of materials that can actively respond and adapt to external stimuli. These materials possess unique properties that can be controlled and manipulated, making them highly desirable in various applications. The students explore the fundamental principles underlying responsive and adaptive materials such as the types of stimuli, like temperature, light, pH, electric fields, and mechanical forces, and how these stimuli can induce changes in material properties. The lecture covers various classes of responsive materials, including shape-memory polymers, self-healing materials, stimuli-responsive hydrogels, and photonic crystals. Students gain insights into the synthesis, characterization, and applications of these materials. Being centered in field of chemistry, the lecture delves into the synthetic aspects and design principles and mechanisms behind the responsiveness of these materials. Students learn about molecular-level interactions, reversible chemical reactions, and structural rearrangements that enable these materials to exhibit unique properties and functionalities. Through case studies and discussions of recent literature examples, students gain a deep understanding of the potential applications of responsive and adaptive materials in fields such as drug delivery, sensors, and actuators. This lecture equips students with the knowledge and tools to contribute to the development of advanced materials that can dynamically respond and adapt to their environment.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

П

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Sequence-controlled polymers		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050429	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Sequence-control in polymers is introduced as concept for both, biological and synthetic polymers, highlighting important parallels as well as differences and different types of sequence-control that can be achieved. Synthetic methodology to obtain sequence-control in polymers is discussed in detail for solid phase synthesis, controlled radical polymerizations and other, specifically developed protocols. Areas of application for sequence-controlled polymers are highlighted using selected examples from literature. Since the field of sequence-controlled polymers is still a young area of research, this lecture will use current researchers from this area to also highlight different aspects of diversity such as gender, race and disability by putting the people behind the research in the focus alongside their contribution to the topic.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Veranstaltung	
Glycopolymers	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050430

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture will introduce glycopolymers as important class of polymeric mimetics of natural sugars. First the natural sugars in the structures and functions from the point-of-view of a polymer chemist are introduced. Next, concepts to mimic these structures from different scaffolds are explored, including details on different glycoconjugation methods. Multivalency as concept, methods to systematically study multivalency effects and its relevance for applications especially in biomedicine are discussed including examples for the development of vaccines, antivirals, anti-tumor therapeutics or wound healing agents.

Zu erbringende Prüfungsleistung

Klausur (gemeinsame Klausur über beide Lehrveranstaltungen des Moduls).

Zu erbringende Studienleistung

Keine.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Veranstaltung	
Circular Economy	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050433

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers concept and paradigms of circular economy, sustainability paradigms, sustainability consideration in materials (synthetic and natural materials) vis-à-vis their use space (building and architecture materials, consumer products, automotive industry, biomedical), regulatory framework, paradigms for incorporating sustainability and reduced carbon foot print.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

M.Ed. Chemie (2023): Joint oral examination on both selected lectures (Vorlesung 1 and Vorlesung 2).

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture slides provided on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or civil engineering

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

П

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Veranstaltung	
Materials in Life Sciences	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050013

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lecture covers various aspects of modern biomaterial science. Topics include matrix for identifying materials (organic/inorganic, synthetic, biological) for biomedical applications (labware, investigative research, human), drug delivery (controlled, targeted, gene delivery, cancer therapeutics, nanomedicines), tissue engineering, biofunctional macromolecular chemistry, polymer processing for biomedical applications, soft matter (hydrogels), self-assembly, biomimetics and bioinspired systems in medical technologies, and selected applications of functional polymers in life sciences.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or pharmaceutical technology or polymer physics or biophysics.

Bemerkung / Empfehlung

Active participation in all sessions are strongly recommended to all students.

Г

Name des Moduls	Nummer des Moduls	
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL	
Veranstaltung		
Methods and Techniques in Biomaterial Science		
Veranstaltungsart	Nummer	
Vorlesung	08LE05V-ID050421	

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	40 h
Selbststudium	50 h
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The course will cover techniques for the surface and bulk characterization of materials with an emphasis on biomedical applications, bioanalytical techniques routinely used in research at the interface of materials and life sciences and relate it to current research topics in biomaterial sciences. Short lab demonstrations of key techniques.

Zu erbringende Prüfungsleistung

graded presentation, and graded term paper

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

Attendance according to §13 (2) Rahmenprüfungsordnung Master of Science Chemie, participation and presentation

Literatur

Lecture notes and reading material (scientific literature) will be provided in class and on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Background in chemistry or materials science, or materials engineering or chemical engineering or civil engineering or pharmaceutical technology or polymer physics or biophysics

Bemerkung / Empfehlung

LIMITED ENROLLMENT 10-15 students maximum

Priority will be given to students enrolled in "Biomaterials and Biosystems" (S3 module) in the study program M.Sc. Sustainable Materials - Polymer Science.

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Veranstaltung	
3D-Printing and Biofabrication	
Veranstaltungsart	Nummer
Vorlesung	08LE05V-ID050003

ECTS-Punkte	3,0
Arbeitsaufwand	90 h
Präsenzstudium	30 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

This seminar-type will cover the processing of biomaterials (thermoplastics and hydrogels) in various biomedical application-based scenarios, with a special emphasis on free form fabrication (FFF) approaches such as 3D-printing. Additionally, the integration of high throughput (HT) concepts with FFF towards biofabrication of tissues and tissue model (organoids) will be covered. Lab tutorials on most common 3D-Printing technologies.

Zu erbringende Prüfungsleistung

M.Sc. Chemistry (2023): One joint oral examination of all the courses of the module.

Part of the exam of the module "Biomaterials and Biosystems" in the study program M.Sc. Sustainable Materials - Polymer Science.

Im Rahmen der Modulteilprüfung Makromolekulare Chemie im Studiengang M.Sc. Chemie (PO 2011) können 3 ECTS Punkte angerechnet werden. In diesem Fall werden keine weiteren ECTS Punkte als Studienleistung im Modul "Methoden und Konzepte" angerechnet.

Zu erbringende Studienleistung

M.Sc. Chemistry (2023): None.

Literatur

Lecture notes will be provided in class and available on ILIAS

Teilnahmevoraussetzung laut Prüfungsordnung

None.

Bemerkung / Empfehlung

LIMITED ENROLLMENT 10-15 students maximum

Priority will be given to students enrolled in "Biomaterials and Biosystems" (S3 module) in the study program M.Sc. Sustainable Materials - Polymer Science.

Active participation in all sessions are strongly recommended to all students.

Name des Moduls	Nummer des Moduls
Modul Vorlesung und Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF8_23_SL
Veranstaltung	
Forschungspraktikum	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID050016

ECTS-Punkte	6,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lab course will provide hand-on experience in current topics of polymer synthesis and characterization by participating in the research work at the Institute for Macromolecular Chemistry.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Schriftliche Ausarbeitung (Praktikumsbericht), mündliche Präsentation (Vortrag im Gruppenseminar) und praktische Leistung (Mitarbeit im Labor).

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls		
Modul Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF9_23_SL		
Verantwortliche/r			
Dr. Ralf Hanselmann Prof. Dr. Laura Hartmann Dr. Stephan Schmidt Prof. Dr. Venkatram Prasad Shastri			
Fachbereich / Fakultät			
Fakultät für Chemie und Pharmazie			

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung	
Keine.	

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Forschungspraktikum	Praktikum	Wahlpflicht	6,0	4,0	90 h

Lern- und Qualifikationsziele der Lehrveranstaltung

The lab course will provide hand-on experience in current topics of polymer synthesis and characterization by participating in the research work at the Institute for Macromolecular Chemistry.

Diese Wahlfach 3 Option ist hauptsächlich vorgesehen für Studierende, die ihre Masterarbeit im Bereich der Makromolekularen Chemie anfertigen wollen.

Zusammensetzung der Modulnote

In diesem Modul wird ausschließlich eine Studienleistung erbracht.

Verwendbarkeit des Moduls

M.Sc. Chemie

M. Sc. Sust. Mat. - Polymer Science

Name des Moduls	Nummer des Moduls		
Modul Praktikum (Wahlfach 3) – Makromolekulare Chemie	08LE05MO-MC-WF9_23_SL		
Veranstaltung			
Forschungspraktikum			
Veranstaltungsart	Nummer		
Praktikum	08LE05P-ID050016		

ECTS-Punkte	6,0
Arbeitsaufwand	90 h
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

The lab course will provide hand-on experience in current topics of polymer synthesis and characterization by participating in the research work at the Institute for Macromolecular Chemistry.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Schriftliche Ausarbeitung (Praktikumsbericht), mündliche Präsentation (Vortrag im Gruppenseminar) und praktische Leistung (Mitarbeit im Labor).

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Kontos	Nummer des Kontos
Masterpraktikum Wahlfach	08LE05KT-MPWF
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Kommentar

Die Studierenden belegen das Masterpraktikum Wahlfach in einem Fachgebiet Ihrer Wahl.

Ausgeschlossen sind diejenigen Fachgebiete, die für das Masterpraktikum Pflichtfach 1 und das Masterpraktikum Pflichtfach 2 gewählt wurden.

Name des Moduls	Nummer des Moduls
Masterpraktikum Wahlfach Anorganische Chemie	08LE05MO-AC-MWF_23
Verantwortliche/r	
Dr. Martin Ade Dr. Burkhard Butschke	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Anorganische Chemie	Praktikum	Pflicht	5,0	5,0	150 h
Seminar zum Masterpraktikum Anorganische Chemie	Seminar	Pflicht	1,0	1,0	30 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können fortgeschrittene Synthesemethoden der anorganischen Chemie praktisch anwenden und die Versuchsdurchführungen dazu selbständig ausarbeiten. Sie können unter Inertbedingungen mit empfindlichen/pyrophoren Substanzen arbeiten und spezifische Techniken für die Synthese und Einkristallzüchtung nichtmolekularer anorganischer Feststoffe und Materialien selbstständig durchführen. Die Studierenden können Präparate mittels moderner physikalischer Methoden, insbesondere Spektroskopie und Diffraktometrie, charakterisieren. Sie können Struktur und Eigenschaften von Stoffen miteinander in Beziehung setzen. Die Studierenden sind in der Lage, ihre Präparate, deren Synthese und Charakterisierung sowie die damit verbundenen chemischen und physikalisch-chemischen Konzepte zu erklären und zu präsentieren.

Zusammensetzung der Modulnote

Molekülteil: 40 %, Festkörperteil: 40 %, studentisches Seminar: 20 %

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls
Masterpraktikum Wahlfach Anorganische Chemie	08LE05MO-AC-MWF_23
Veranstaltung	
Masterpraktikum Anorganische Chemie	
Veranstaltungsart	Nummer
Praktikum	08LE05P-ID010030
Veranstalter	
Institut für Anorganische und Analytische Chemie	

ECTS-Punkte	5,0
Arbeitsaufwand	150 h
Präsenzstudium	90 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	5,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Das präparativ ausgerichtete Praktikum besteht aus Teilen zur Molekülchemie und zur Festkörperchemie. Molekülteil: präparatives Arbeiten unter Inertbedingungen mit empfindlichen/pyrophoren Substanzen (Phosphane, Silane, Metallalkyle, Übergangsmetallkomplexe, Brønsted-Supersäuren, schwach koordinierende Anionen/Kationen, etc.), Charakterisierung der Produkte über NMR-, IR- und Raman-Spektroskopie sowie ggfs. Massenspektrometrie oder Einkristalldiffraktometrie.

Festkörperteil: Synthesemethoden und -techniken für anorganische Festkörper und Funktionsmaterialien (Festkörperreaktionen, Sol-Gel- und Solvothermalsynthesen, Schmelzlösungskristallisationen, chemische Transportreaktionen), Charakterisierung über Röntgenbeugung, IR- und Raman-Spektroskopie sowie ggfs. thermische Analysemethoden (DTA, TG, DSC), elektrische und magnetische Messungen.

Zu erbringende Prüfungsleistung

Praktische Arbeit, schriftliche Ausarbeitungen (Protokolle), Kolloquien zu den Präparaten, Übungen zur Röntgenbeugung und zur Kristallchemie.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit, verpflichtende Teilnahme an Sicherheitsunterweisung und Einführungsseminaren zu Methoden im Praktikum, Erstellung von Betriebsanweisungen, Platzübernahme und Platzabgabe.

Literatur

Skripte zum Praktikum

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls		
Masterpraktikum Wahlfach Anorganische Chemie	08LE05MO-AC-MWF_23		
Veranstaltung			
Seminar zum Masterpraktikum Anorganische Chemie			
Veranstaltungsart Nummer			
Seminar	08LE05S-ID010030		

ECTS-Punkte	1,0
Arbeitsaufwand	30 h
Präsenzstudium	15 h
Selbststudium	15 h
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Im studentischen Seminar zum MPAC stellen die Studierenden ihre Präparate in Form von Kurzvorträgen vor. Dabei sollen sowohl theoretische Grundlagen sowie die im Labor angewandten Synthese- und Charakterisierungsmethoden diskutiert werden.

Zu erbringende Prüfungsleistung

Mündliche Präsentation im studentischen Seminar: Seminarvortrag im Umfang von ca. 15 min zu einem von der Praktikumsleitung gegebenen Thema mit Bezug zu den eigenen Präparaten.

Zu erbringende Studienleistung

Keine.

Literatur

Skripte zum Praktikum

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Masterpraktikum Wahlfach Organische Chemie	08LE05MO-OC-MWF_23
Verantwortliche/r	
Prof. Dr. Bernhard Breit Prof. Dr. Henning Jessen Prof. Dr. Daniel B. Werz	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Organische Chemie	Praktikum	Pflicht	6,0	6,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung
Vermittlung weiterführender Arbeitsweisen und -techniken der präparativen Organischen Chemie.
Zusammensetzung der Modulnote
Schriftlich, mündlich, praktisch
Verwendbarkeit des Moduls
M.Sc. Chemie

Name des Moduls	Nummer des Moduls	
Masterpraktikum Wahlfach Organische Chemie	08LE05MO-OC-MWF_23	
Veranstaltung		
Masterpraktikum Organische Chemie		
Veranstaltungsart	Nummer	
Praktikum 08LE05P-ID020025		
Veranstalter		
Institut für Organische Chemie		

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	150 h
Selbststudium	30 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Vermittlung weiterführender Arbeitsweisen und -techniken der präparativen Organischen Chemie; ggf. unter Wasser- und Luftausschluss.

Besuch der Organisch-Chemischen-Kolloquien und GDCh-Vorträge des Praktikums-Semesters.

Zu erbringende Prüfungsleistung

Schriftliche Ausarbeitung, mündliche Präsentation, praktische Leistung

Zu erbringende Studienleistung

Vorbesprechung, Sicherheitsbelehrung

Nachweis des Besuchs der Organisch-Chemischen-Kolloquien und GDCh-Vorträge des Praktikums-Semesters.

Literatur

Handouts zum Praktikum ggf. über Ilias.

R. Brückner et al., Praktikum Präparative Organische Chemie - Organisch Chemisches Fortgeschrittenenpraktikum, Spektrum Akademischer Verlag, Heidelberg, 2009.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Name des Moduls	Nummer des Moduls
Masterpraktikum Wahlfach Physikalische Chemie	08LE05MO-PC-MWF_23
Verantwortliche/r	
Prof. Dr. Thorsten Hugel Prof. Dr. Stefan Weber	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Physikalische Chemie (M.Sc. Chemie) und Fortgeschrittenenpraktikum Physikalische Chemie (M.Ed. Chemie)	Praktikum und Semi- nar	Pflicht	6,0	6,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Im Masterpraktikum Physikalische Chemie werden Experimente zu komplexeren Themen der Spektroskopie, der Kinetik, der Thermodynamik und der Elektrochemie angeboten. Neben der Kenntnis der zugrundeliegenden Theorien, die gegenüber dem Stoff der Vorlesungen und Übungen vertieft behandelt werden, soll Verständnis für aufwändigere Versuchsaufbauten und die Auswertung und Interpretation der Messdaten erlangt werden.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus den Einzelbewertungen der mündlichen Versuchsvorbesprechungen und der Versuchsprotokolle, sowie aus der Bewertung eines von den Absolventen gehaltenen Vortrages im Rahmen des begleitenden Seminars zusammen.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls		
Masterpraktikum Wahlfach Physikalische Chemie	08LE05MO-PC-MWF_23		
Veranstaltung			
Masterpraktikum Physikalische Chemie (M.Sc. Chemie) und Fortgeschrittenenpraktikum Physikalische Chemie (M.Ed. Chemie)			
Veranstaltungsart Nummer			
Praktikum und Seminar	08LE05P-ID030020		

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	90 h
Selbststudium	60 h
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Vermittelt wird ein Einblick in Physikalisch-Chemische Methoden der modernen Naturwissenschaften. Dazu werden Experimente aus verschiedenen Bereichen der Physikalischen Chemie, wie z. B. der Spektroskopie, der theoretischen Chemie, der Mikroskopie im molekularen Maßstab, der magnetischen Resonanzspektroskopie und der Kinetik angeboten. Neben der Kenntnis der zu Grunde liegenden Theorien, die gegenüber dem Stoff der Vorlesungen und der Übungen hier vertieft behandelt werden, soll das Verständnis für aufwändigere Versuchsaufbauten vermittelt werden, das die Datenanalyse und die Interpretation der Messergebnisse einschließt.

- M. Sc. Chemie (2023): Die Studierenden führen sechs Experimente durch.
- M. Ed. Chemie: Die Studierenden führen drei Experimente durch.

Zu erbringende Prüfungsleistung

M.Sc. Chemie: Erfolgreiche Absolvierung von Vorgesprächen zu den einzelnen Versuchen, die Erstellung von Versuchsprotokollen, sowie die Konzeption und Präsentation eines Vortrages zu einem vorgegebenen Thema aus dem Bereich der Physikalischen Chemie.

M.Ed. Chemie: Keine.

Zu erbringende Studienleistung

M. Sc. Chemie: Praktische Durchführung von Experimenten gemäß Versuchsanleitung

M. Ed. Chemie: Erfolgreiche Absolvierung von Vorgesprächen zu den einzelnen Versuchen, die praktische Durchführung von Experimenten gemäß Versuchsanleitung, die Erstellung von Versuchsprotokollen, sowie die Konzeption und die Präsentation eines Vortrages zu einem vorgegebenen Thema aus dem Bereich der Physikalischen Chemie.

M.Ed. Chemie: Die benotete Studienleistung setzt sich zusammen aus:

- 25 % Seminarvortrag
- 75 % Einzelbewertungen der mündlichen Versuchsvorbesprechungen und Versuchsprotokolle (Vorbesprechung : Protokoll = 1:1)

Literatur

Peter W. Atkins, Julio de Paula, James J. Keeler: "Physikalische Chemie", Wiley-VCH Gerd Wedler, Hans-Joachim Freund: "Lehr und Arbeitsbuch der Physikalischen Chemie", Wiley-VCH

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Г

Name des Moduls	Nummer des Moduls		
Masterpraktikum Wahlfach Biochemie	08LE05MO-BC-MWF_23		
Verantwortliche/r			
Prof. Dr. Thorsten Friedrich			
Fachbereich / Fakultät			
Fakultät für Chemie und Pharmazie			

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Biochemie	Praktikum	Pflicht	6,0	8,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können:

- Mit genetischem Material entsprechend der Sicherheitsanweisungen umgehen
- Genetisches Material nach dem neuesten Stand der Technik manipulieren
- Genetisches Material analysieren
- Bakterien im Labor handhaben
- Lösliche und Membranproteine mit unterschiedlichen Methoden aus Bakterien aufreinigen
- Proteine durch biophysikalische Methoden charakterisieren und deren Funktion bestimmen
- Ihre Ergebnisse korrekt dokumentieren und die Ergebnisse ihrer Experimente diskutieren
- In Datenbanken nach benötigten Fakten und Literatur suchen
- Ihre Ergebnisse im Licht der aktuellen Literatur diskutieren
- Experimente selbstständig planen und durchführen
- die Kompetenzen ihrer Kollegen und Kolleginnen achten und eigene Fähigkeiten konstruktiv in Teamarbeit einbringen
- kritisch an wissenschaftlichen Diskussionen teilnehmen, aktiv zuhören, ein konstruktives Feedback geben und relevante Fragen stellen.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus

- 35% der Noten für praktisches Arbeiten im Labor
- 35% der Noten für Arbeitsplatzgespräche und
- 30% der Noten für die Protokolle

Verwendbarkeit des Moduls

M.Sc. Chemie

Г

Name des Moduls Nummer des Modu			
Masterpraktikum Wahlfach Biochemie 08LE05MO-BC-MWF_			
Veranstaltung			
Masterpraktikum Biochemie			
Veranstaltungsart	Nummer		
Praktikum	08LE05P-ID040020		

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	100 h
Selbststudium	80 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Moderne Methoden der Molekularbiologie (Manipulation von DNA, Klonierungen, PCR), der Lipide und der Protein Biochemie (Isolation und Präparation von Proteinen); weiterführende analytische Methoden; Spektroskopie.

Zu erbringende Prüfungsleistung

Praktisches Arbeiten im Labor, Arbeitsplatzgespräche und Protokolle.

Zu erbringende Studienleistung

Literatur

Nelson, Cox: Lehninger Biochemie, Springer, 2009

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen unter http://portal.uni-freiburg/biochemie

Teilnahmevoraussetzung laut Prüfungsordnung

Bemerkung / Empfehlung

Sicherheitswidriges Verhalten kann im Praktikums zum Ausschluss und dem "Nicht Bestehen", auch nach der Zulassung zum Praktikum, führen.

Name des Moduls	Nummer des Moduls		
Masterpraktikum Wahlfach Makromolekulare Chemie	08LE05MO-MC-MWF_23		
Verantwortliche/r			
Dr. Ralf Hanselmann Prof. Dr. Laura Hartmann Dr. Stephan Schmidt Prof. Dr. Venkatram Prasad Shastri			
Fachbereich / Fakultät			
Fakultät für Chemie und Pharmazie			

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Masterpraktikum Makromolekulare Chemie	Praktikum	Pflicht	6,0	8,0	180 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden setzen moderne Methoden der makromolekularen Chemie (Synthese, Analytik und Anwendung) in der Laborarbeit und durch Mitarbeit in der Forschung am Institut für Makromolekulare Chemie um.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus:

- 25 % schriftliche Ausarbeitung
- 25% mündliche Präsentation
- 50% praktische Leistung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls		
Masterpraktikum Wahlfach Makromolekulare Chemie	08LE05MO-MC-MWF_23		
Veranstaltung			
Masterpraktikum Makromolekulare Chemie			
Veranstaltungsart	Nummer		
Praktikum	08LE05P-ID050014		
Veranstalter			
Institut für Makromolekulare Chemie			

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Präsenzstudium	90 h
Selbststudium	90 h
Semesterwochenstunden (SWS)	8,0
Mögliche Fachsemester	1
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Praktische Erfahrung mit wichtigen Methoden in den Polymerwissenschaften, z.B. moderne Mikroskopie an Oberflächen und Grenzflächen (AFM, TEM, ESEM), funktionalisierte Polymere und Polymeranalytik (GPC, MALDI-ToF), Rheologie und Polymerverarbeitung, polymere Werkstoffe (Duroplaste, Thermoplaste, Kautschuk), Dispersionen, Biopolymere und Polymere für die Life Sciences.

Zu erbringende Prüfungsleistung

PL: schriftliche/mündliche/praktische Modulteilprüfung - die mündliche Prüfung kann vom Assistenten abgenommen werden.

Wenn in diesem Fachgebiet die Kompetenzen des Praktikums bereits außerhalb des Masterstudiums in Form von z.B. einer B.Sc. Arbeit erworben wurden, so kann das Praktikum in diesem Modul ersetzt werden. Es wird empfohlen, dass die Protokolle spätestens 1 Woche nach dem Praktikum abgegeben werden und nach max. 2 Wochen zu korrigieren sind.

Zu erbringende Studienleistung

Literatur

B.Tieke, "Makromolekulare Chemie- Eine Einführung", Wiley-VCH, Weinheim 2005

Handouts und Übungsmaterial zum Modul in den jeweiligen Lehrveranstaltungen und weiterführende Informationen zu den Modulen unter http://portal.uni-freiburg.de/makro-chemie

Teilnahmevoraussetzung laut Prüfungsordnung

Bemerkung / Empfehlung

Sicherheitswidriges Verhalten kann im Praktikums zum Ausschluss und dem "Nicht Bestehen", auch nach der Zulassung zum Praktikum, führen.

Name des Moduls	Nummer des Moduls
Projektpraktikum 1 oder 2	08LE05MO-PP1_23
Verantwortliche/r	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	15,0
Arbeitsaufwand	450 h
Mögliche Fachsemester	3
Moduldauer	3 Monate
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	in jedem Semester

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Projektpraktikum	Praktikum	Wahlpflicht	15,0		450 h

Lern- und Qualifikationsziele der Lehrveranstaltung

Über die Mitarbeit an aktuellen Forschungsprojekten in wissenschaftlichen Arbeitsgruppen erlernen die Studierende Problemlösungsstrategien auch für komplexe Fragestellungen in Forschung und Entwicklung, die Wichtigkeit von Teamarbeit, vernetztem Denken sowie guter wissenschaftlicher Praxis sowie fortgeschrittene praktische Kompetenzen in der Laborarbeit und/oder für rechnergestützte Experimente. Im Rahmen der Projektpraktika vertiefen sie ihre Kenntnisse in einem speziellen aktuellen Forschungsgebiet und können besonders in diesem Bereich neue Forschungsergebnisse in den Kontext bereits bekannter Ergebnisse einordnen. Über den zum Abschluss des Moduls zu erbringenden Projektbericht in schriftlicher und/oder mündlicher Form üben sie die Dokumentation und Kommunikation der Ergebnisse einer wissenschaftlichen Projektarbeit in der Chemie ein, um so auch für die Anforderungen der Masterarbeit zum Abschluss ihres M.Sc.-Studiums vorbereitet zu sein.

Sollte eines oder beide der Projektpraktika im Ausland durchgeführt werden (was ausdrücklich empfohlen wird), so kann das Modul zusätzlich zum Kennenlernen des Arbeitsalltags in Forschung und Entwicklung in anderen Ländern sowie zum Erwerb wichtiger Fremdsprachenkenntnisse genutzt werden.

Verwendbarkeit des Moduls

M.Sc. Chemie

Г

Name des Moduls Nummer des Moduls		
Projektpraktikum 1 oder 2	08LE05MO-PP1_23	
Veranstaltung		
Projektpraktikum		
Veranstaltungsart	Nummer	
Praktikum	08LE05P-ID090005	

ECTS-Punkte	15,0
Arbeitsaufwand	450 h
Präsenzstudium	300 h
Selbststudium	150 h
Semesterwochenstunden (SWS)	
Mögliche Fachsemester	3
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	deutsch

Praktische Arbeit auf einem aktuellen Gebiet der chemischen Forschung in den Arbeitsgruppen der Fakultät für Chemie und Pharmazie und/oder bei auswärtigen Forschungseinrichtungen weltweit.

Konzeption von Forschungsprojekten, Literaturrecherche, Anwendung aktueller experimenteller Techniken und Methoden, Dokumentation, Auswertung, Bewertung und Präsentation experimenteller Ergebnisse.

Hinweis: Die Projektpraktika 1 und 2 können im Einverständnis mit der/m betreuenden ProfessorIn auch zu einem Praktikum von 30 ECTS (und damit ca. 6 Monaten Dauer) kombiniert werden. Dies kann insbesondere für externe Praktika im Ausland günstig sein.

Zu erbringende Prüfungsleistung

Keine.

Zu erbringende Studienleistung

Regelmäßige Anwesenheit, Laborarbeit im Umfang von ca. 300 Arbeitsstunden, Projektbericht in mündlicher oder schriftlicher Form nach Vorgabe der/s betreuenden ProfessorIn.

Literatur

Aktuelle Forschungsliteratur zum Thema des Projektpraktikums.

Teilnahmevoraussetzung laut Prüfungsordnung

Keine.

Wichtige Hinweise für externe Projektpraktika (also solche, die nicht in einer Arbeitsgruppe der Fakultät für Chemie und Pharmazie durchgeführt werden): um ein Projektpraktikum extern absolvieren zu können, muss im Vorfeld ein/e ProfessorIn der Fakultät für Chemie und Pharmazie gefunden werden, die das externe Projektpraktikum unterstützt und abschließend die Erfüllung der Studienleistung bescheinigt. Hierfür sind Inhalt, Zeitrahmen und Ziele des Projektpraktikums mit der/dem betreuenden ProfessorIn abzusprechen und sein/ihr Einverständnis einzuholen. Ohne eine solche vorherige Absprache, welche gegenüber dem Prüfungsamt per Formular zu dokumentieren ist, dürfen externe Praktika nicht begonnen werden. Zur Unterstützung der

Organisation und Finanzierung externer Praktika (z.B. über das Erasmus-Programm der Europäischen Union) wird weiterhin empfohlen, spätestens drei Monate vor Praktikumsstart mit der/dem Auslandsbeauftragten der Fakultät für den Fachbereich Chemie Kontakt aufzunehmen (Email: erasmus@chemie.uni-freiburg.de).

Name des Moduls	Nummer des Moduls
Interdisziplinäre Ergänzung	08LE05MO-IEG_23
Verantwortliche/r	
Fachprüfungsausschuss M.Sc. Chemie	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	6,0
Arbeitsaufwand	180 h
Mögliche Fachsemester	1
Moduldauer	1-2 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung laut Prüfungsordnung	
Keine.	

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand

Im Modul Interdisziplinäre Ergänzung sind durch die Absolvierung geeigneter Module oder Lehrver anstaltungen aus dem Lehrangebot anderer Studiengänge der Albert-Ludwigs-Universität oder der Eucor-Partnerhochschulen oder von Sprachkursen aus dem Lehrangebot der Seminare und Institute der Philologischen und der Philosophischen Fakultät (Kurse für Hörer/Hörerinnen aller Fakultäten) insgesamt 6 ECTS-Punkte zu erwerben. Über die Geeignetheit der Module beziehungsweise Lehrveranstaltungen entscheidet der Fachprüfungsausschuss.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden erweitern nach individueller Schwerpunktsetzung ihr Kompetenzprofil außerhalb der direkt auf das Fach Chemie bezogenen Kompetenzen.

Zusammensetzung der Modulnote

Keine Prüfungsleistung.

Verwendbarkeit des Moduls

M.Sc. Chemie

Name des Moduls	Nummer des Moduls
Mastermodul	08LE05MO-8000_23_23
Verantwortliche/r	
Erstgutachter/in der Masterarbeit	
Fachbereich / Fakultät	
Fakultät für Chemie und Pharmazie	

ECTS-Punkte	30,0
Arbeitsaufwand	900 h
Mögliche Fachsemester	4
Moduldauer	1
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	in jedem Semester

- im Studiengang M.Sc. Chemie müssen mindestens 84 ECTS-Punkte bereits erworben sein.
- alle Module aus dem Pflichtbereich des Studiengangs müssen erfolgreich absolviert worden sein.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand

Inhalte

In der Masterarbeit (28 ECTS-Punkte) wird von den Studierenden ein in sich thematisch abgeschlossenes Forschungsprojekt bearbeitet und ausgewertet. Ergebnisse und Schlussfolgerungen werden abschließend sowohl schriftlich als auch mündlich ausführlich präsentiert. Das Thema der Masterarbeit wird in Absprache mit der/dem BetreuerIn festgelegt, die/der LeiterIn derjenigen Arbeitsgruppe an der Fakultät für Chemie und Pharmazie sein soll, in der die Masterarbeit durchgeführt wird. Die/der BetreuerIn fungiert auch als ErstgutachterIn der Masterarbeit.

Die Masterarbeit wird ergänzt durch ein etwa 30-minütiges Masterkolloquium (2 ECTS-Punkte), das nach Wahl des/der Studierenden in deutscher oder englischer Sprache durchgeführt wird. Das Masterkolloquium besteht aus einem etwa 20-minütigen Vortrag des/der Studierenden über die Ergebnisse der Masterarbeit und einer daran anschließenden Diskussion. Es wird in der Regel von dem/der BetreuerIn der Masterarbeit geleitet und bewertet. Das Masterkolloquium ist fakultätsöffentlich und muss spätestens sechs Wochen nach Abgabetermin der Masterarbeit gehalten werden.

Lern- und Qualifikationsziele der Lehrveranstaltung

Die Studierenden können eine facettenreiche wissenschaftliche Fragestellung aus der Chemie selbstständig und in einem fest vorgegebenen Zeitrahmen unter Einsatz fortgeschrittener wissenschaftlicher Methoden bearbeiten. Hierfür können sie Fachliteratur recherchieren, verstehen, zu Ihrem Masterprojekt in Bezug setzen und auf dieser Basis die Projektziele definieren und einen Arbeitsplan aufstellen. Sie können moderne experimentelle Verfahren selbstständig einsetzen und die für die Durchführung des Projekts nötigen Untersuchungen im Labor und/oder an Rechnern selbst durchführen. Sie sind in der Lage, die so erhaltenen Ergebnisse nach den Regeln guter wissenschaftlicher Praxis zu dokumentieren, auszuwerten und sowohl schriftlich als auch mündlich einem fachkundigen Publikum zu präsentieren.

Zu erbringende Prüfungsleistung

Masterarbeit

Zu erbringende Studienleistung

Masterkolloquium, spätestens sechs Wochen nach Abgabe der Masterarbeit.

Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden in den Gutachten zur Masterarbeit vergebenen Bewertungen.

Literatur

Aktuelle Forschungsliteratur zum Thema des Masterarbeit.

Verwendbarkeit des Moduls

M.Sc. Chemie

Epilog Kontaktdaten

Studiengangkoordination: studiengangkoordination@chemie.uni-freiburg.de Studiendekan: studiendekan@chemie.uni-freiburg.de

ILIAS Kurs der Studiengangkoordination Informationen zum Studium

Hier finden Sie alle studienrelevanten Informationen wie z.B. Termine, Fristen, Ansprechpersonen, Formulare, usw.

Kursbeitritt bequem per QR Code:

